Documentation

Frourio.Examples

黄金比の基本性質

theorem Frourio.phi_pos :
0 < φ

黄金比は正

黄金比の逆数:φ⁻¹ = φ - 1

theorem Frourio.S_phi_two :
S φ 2 = 2 * φ - 1

具体例:S_2(φ) = φ

noncomputable def Frourio.goldenMellinSymbol (s : ) :

黄金Frourio作用素のMellin記号

Equations
Instances For
    noncomputable def Frourio.ThreePointExample (δ : ) ( : 0 < δ) :

    3点Frourio作用素の例

    Equations
    Instances For

      Basic 1D example: from an initial value to JKO, then to EDE and EVI. We take X := ℝ, the energy F := fun _ => 0, and λ_eff := 0.

      noncomputable def FrourioExamples.F :
      Equations
      Instances For
        noncomputable def FrourioExamples.lamEff :
        Equations
        Instances For
          noncomputable def FrourioExamples.rho (ρ0 : ) :
          Equations
          Instances For

            JKO witness: the constant curve at ρ0.

            EDE holds for the constant curve and constant energy.

            theorem FrourioExamples.basic1D_EVI (ρ0 : ) :
            Frourio.IsEVISolution { E := F, lam := lamEff } (rho ρ0)

            EVI holds for the constant curve when λ_eff = 0.

            theorem FrourioExamples.basic1D_chain (ρ0 : ) :
            ∃ (ρ : ), ρ 0 = ρ0 Frourio.JKO F ρ0 Frourio.EDE F ρ Frourio.IsEVISolution { E := F, lam := lamEff } ρ

            Integrated existence: from ρ0, there exists a curve realizing JKO, EDE, EVI.

            Quadratic energy example on ℝ: closed‑form MM step and a chain to EVI via a package equivalence. This showcases the MM functional with F(x) = (1/2) x^2.

            noncomputable def FrourioExamplesQuadratic.Fq :

            Quadratic energy F(x) = (1/2) x^2.

            Equations
            Instances For
              theorem FrourioExamplesQuadratic.quadratic_mm_step_closed_form (τ xPrev : ) ( : 0 < τ) :
              Frourio.MmStep τ Fq xPrev (xPrev / (1 + τ))

              Closed‑form MM minimizer for the quadratic energy on ℝ: x* = xPrev / (1 + τ) minimizes F(x) + (1/(2τ))‖x − xPrev‖^2 when τ > 0.

              Trivial JKO witness for the quadratic energy: the constant curve.

              theorem FrourioExamplesQuadratic.chain_quadratic_to_EVI (lamEff : ) (G : Frourio.plfaEdeEviJko_equiv Fq lamEff) (x0 : ) :
              ∃ (ρ : ), ρ 0 = x0 Frourio.IsEVISolution { E := Fq, lam := lamEff } ρ

              With a packaged PLFA = EDE = EVI = JKO equivalence for Fq, a JKO initializer produces an EVI solution (example chain).

              FG8-style examples: demonstrate how to apply the integrated suite, effective-λ lower bound, and two‑EVI with force wrappers added in FGTheorems. These are statement-level demos parameterized by the corresponding assumptions.

              Demo: Run the integrated gradient-flow suite via the real-route auto wrapper. Supply real analytic flags for F := Ent + γ·Dσm, an EDE⇔EVI builder on analytic flags, an effective-λ lower-bound witness, and a two‑EVI with force hypothesis.

              Demo: Construct λ_eff lower bound from Doob+m‑point hypotheses using the FG-level convenience wrapper.

              Demo: From two_evi_with_force S, obtain a distance synchronization with error for any pair of curves u, v via the concrete Grönwall route.

              Demo (closed form): if the Grönwall predicate holds for all η, then obtain an error parameter with a distance synchronization bound.