Documentation

Frourio.Geometry.GradientFlowFramework

Gradient-Flow Framework: statements and data glue #

This module bundles FG core data with the functional layer and exposes statement-level predicates for the FG8 equivalences and bounds: PLFA = EDE = EVI = JKO, effective lambda lower bounds, two-EVI with force, tensorization (min rule placeholder), and a multi-scale effective lambda.

The goal here is to fix API shapes that connect existing components; heavy analytic proofs will be added in later phases.

FG8 data pack: core FG data, a functional with coupling, external budget constants and parameters controlling Doob degradation and symbol sizes.

Instances For

    Equivalence packaging (PLFA = EDE = EVI = JKO) at statement level using the functional F = Ent + γ·Dσm and effective parameter λ_BE = λ - 2ε.

    Equations
    Instances For

      Equivalence theorem (wrapper): if the packaged equivalence holds for F := Ent + γ·Dσm and λ_BE := λ - 2ε, then the gradient-flow equivalence holds.

      Effective lambda lower bound statement: there exists λ_eff satisfying the budgeted inequality with Doob-corrected parameter.

      Equations
      Instances For

        Lower bound theorem (wrapper): a provided inequality instantiates the lambda_eff_lower_bound statement.

        Strengthen a provided lambda_eff_lower_bound using the explicit lower bound encoded in real analytic flags by choosing lamEff' = max(lamEff, L_flags).

        Effective lambda lower bound derived from Doob assumptions and m-point zero-order bounds. Uses the constructive inequality from the analysis layer.

        Two-EVI with external forcing: packaged via the analysis-layer predicate.

        Equations
        Instances For
          theorem Frourio.two_evi_with_force_of {X : Type u_1} [PseudoMetricSpace X] [MeasurableSpace X] (S : GradientFlowSystem X) (H : ∀ (u v : X), TwoEVIWithForce { E := S.func.F, lam := S.base.lam } u v) :

          two-EVI with force theorem (wrapper): pass through an analysis-layer result.

          Integrated gradient-flow suite: bundles the equivalence package, the lambda_eff lower bound, and the two-EVI with force into a single statement.

          Proof-backed variant: build the equivalence package from analytic flags and an EDEEVIAssumptions pack (EDE ⇔ EVI), then assemble the integrated suite.

          Minimal tensorization predicate: requires coercivity surrogates and nonnegative coupling for both factors.

          Equations
          Instances For
            noncomputable def Frourio.effective_lambda_multiscale {m : } (α κ Λ : Fin m) (k : Fin m) (lam : ) :

            Multi-scale effective lambda helper: product of single-scale factors over j : Fin m.

            Equations
            Instances For
              @[reducible, inline]
              noncomputable abbrev Frourio.effectiveLambdaVec {m : } (α κ Λ : Fin m) (k : Fin m) (lam : ) :

              Alias used in the design notes.

              Equations
              Instances For
                def Frourio.multiscale_lambda_rule {m : } (Λ α κ : Fin m) (k : Fin m) :

                Multi-scale rule statement: for any base parameter λ, there exists an effective parameter obtained by the product formula.

                Equations
                Instances For
                  theorem Frourio.multiscale_lambda_rule_thm {m : } (Λ α κ : Fin m) (k : Fin m) :

                  Trivial constructor for the multiscale effective-λ rule: choose the right-hand side as the witness.

                  theorem Frourio.effective_lambda_multiscale_rpow {m : } (α κ Λ : Fin m) (k : Fin m) (lam : ) ( : ∀ (j : Fin m), 0 < Λ j) :
                  effective_lambda_multiscale α κ Λ k lam = lam * j : Fin m, (Λ j).rpow ((κ j - 2 * α j) * (k j))

                  Arithmetic form: multiscale effective λ as a product of real powers when each Λ j > 0.