P5: Doob transform skeleton (API only)
We provide a lightweight Diffusion
structure and a Doob transform shell.
Heavy analysis (Leibniz, Hessian calculus) is deferred. Key identities are
stated as Prop
so CI remains light.
Doob transform effect on curvature-dimension parameter. The BE degradation: λ ↦ λ - 2ε(h) where h > 0 is the Doob function. In BE theory, ε(h) measures the curvature degradation:
- ε(h) = sup_φ {∫ Γ₂(log h, φ) dμ / ‖φ‖²}
- ε(h) = 0 iff h is log-harmonic (∇²(log h) = 0) The transformed measure is dμ_h = h²dμ.
- ε : ℝ
The degradation amount ε(h) from the Doob function h
Non-negativity (always true in BE theory)
The degraded parameter after Doob transform
Instances For
Curvature-dimension predicate (pointwise Γ₂ bound).
HasCD D λ
encodes a Bakry–Émery type lower bound in the CD(λ, ∞)
form: for all test functions f
and points x
, one has
Γ₂(f)(x) ≥ λ · Γ(f)(x)
. This concrete predicate keeps the API light
while allowing downstream theorems to reference an actual inequality.
Instances For
Equations
- Frourio.Doob h D = { E := D.E, L := Frourio.doobL D h, Gamma := D.Gamma, Gamma2 := D.Gamma2 }
Instances For
Strict positivity of
h
ensuring the Doob transform is well-defined.- leibniz_L : HasLeibnizL D
Concrete Leibniz rule for the generator.
- leibniz_Gamma : HasLeibnizGamma D
Concrete product rule for
Γ
. Curvature-dimension shift: for any CD parameter
lam
ofD
, there exists a possibly degraded parameterlam'
forDoob h D
withlam' ≤ lam
. Later phases will refine this to an explicit formula using∇² log h
.- BE_degradation : ℝ
BE degradation for meta-variational principle: λ_eff ≥ λ - 2ε(h). This field provides the degradation amount ε(h) ≥ 0 from the Hessian of log h.
Non-negativity of degradation
The cd_shift explicitly uses BE_degradation: Doob h D satisfies CD(λ - 2*BE_degradation)
Instances For
Minimal Bochner-style correction statement needed to realize the explicit
CD parameter shift under a Doob transform. Parameterized by eps
from the
Hessian bound on log h
.
Equations
- Frourio.BochnerMinimal h D eps = ∀ (lam : ℝ), Frourio.HasCD D lam → Frourio.HasCD (Frourio.Doob h D) (lam - 2 * eps)
Instances For
Γ identity under Doob transform (theoremized via assumptions).
Γ₂ identity under Doob transform (theoremized via assumptions). Later phases will relax the equality to the corrected identity under minimal Bochner assumptions.
Under strict positivity of h
, the Doob generator evaluates without
the if
guard. This provides a convenient pointwise formula.
If Γ
satisfies the product rule for D
, then it also does for Doob h D
when the Γ
fields agree (operator-level compatibility).
Equations
- Frourio.lambdaBE lam eps = lam - 2 * eps
Instances For
API: Extract the effective curvature parameter λ_BE from DoobAssumptions when we know the Hessian bound parameter ε.
API: The Doob-shifted parameter λ_BE satisfies the expected inequality λ_BE = λ - 2ε ≤ λ when ε ≥ 0.
Combined API: Given DoobAssumptions and BochnerMinimal, we get both the CD property with λ_BE and the bound λ_BE ≤ λ.
Quantitative Doob transform pack: stores an ε ≥ 0
for which the
minimal Bochner correction holds. This yields an explicit CD parameter
shift λ' = λ − 2ε
together with λ' ≤ λ
.
- eps : ℝ
- bochner : BochnerMinimal h D self.eps
Instances For
Pointwise form: from DoobQuantitative
, directly obtain the transformed CD
bound at the explicit value λ_BE = λ − 2ε
along with the monotonicity ≤
.
Equations
- Frourio.DoobLamBound.mk' lamBase eps = { lamBase := lamBase, eps := eps, lamEff := Frourio.lambdaBE lamBase eps, h_lamEff := ⋯ }
Instances For
Extended API for meta-variational principle: Connect BE_degradation field to the explicit λ_eff formula.
Convenience: extract effective λ for meta-variational principle
Equations
- Frourio.doob_lambda_eff h D H lam = lam - 2 * H.BE_degradation
Instances For
The effective λ satisfies the expected bound