Documentation

Frourio.Analysis.PLFA.PLFACore1

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def Frourio.chooseAnalyticRoute {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (useReal : Bool) :

    Integration point: Choose between placeholder and real analytic flags.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Frourio.both_routes_valid {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (h_usc : ∀ (ρ : X) (s s' t' : ), s' < t'wSet.Icc 0 (t' - s'), y₀Set.Icc 0 (t' - s'), |y₀ - w| < (t' - s') / 4upper_semicontinuous_at_zero (fun (τ : ) => F (ρ (s + τ)) - F (ρ s)) s' y₀) :
      (∃ (_real_flags : AnalyticFlagsReal X F lamEff), True)(∃ (_ : AnalyticFlags F lamEff), True)chooseAnalyticRoute F lamEff true chooseAnalyticRoute F lamEff false

      Theorem: Both routes lead to PLFA/EDE equivalence (when they exist with USC).

      Real-route bridge builders (exported): provide the PLFA_EDE_from_real_flags and JKO_PLFA_from_real_flags predicates directly from the corresponding implementation lemmas above. These are convenient when a caller expects the predicate-valued builders rather than the explicit lemmas.

      Exported builder: real flags ⇒ PLFA↔EDE predicate.

      Exported builder: real flags ⇒ JKO→PLFA predicate.

      def Frourio.EDE_EVI_pred {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
      Equations
      Instances For
        def Frourio.plfaEdeEviJko_equiv {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          structure Frourio.EquivBuildAssumptions {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
          Instances For
            theorem Frourio.build_plfaEdeEvi_package {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EquivBuildAssumptions F lamEff) :
            theorem Frourio.build_plfaEdeEvi_package_weak {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EquivBuildAssumptions F lamEff) :
            structure Frourio.EDEEVIAssumptions {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
            Instances For
              theorem Frourio.ede_evi_from_pack {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDEEVIAssumptions F lamEff) :
              EDE_EVI_pred F lamEff
              theorem Frourio.ede_evi_from_analytic_flags_with_core {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDE_EVI_from_analytic_flags F lamEff) :
              EDE_EVI_pred F lamEff

              Convenience: instantiate EDE_EVI_from_analytic_flags using core flags. This is a statement-level helper to wire builders without supplying concrete half‑convexity and strong upper bound proofs (both are satisfiable with c = 0).

              theorem Frourio.ede_evi_from_real_flags_and_builder_with_bound {X : Type u_2} [PseudoMetricSpace X] (F : X) (lamEff : ) (flags : AnalyticFlagsReal X F lamEff) (H : EDE_EVI_from_analytic_flags F lamEff) :

              Real flags also carry an explicit numeric lower bound for lamEff. Pair the builder result with lamEff ≥ lamLowerBound extracted from the flags.

              def Frourio.EDE_to_EVI_from_flags {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :

              Directional bridge (flags → EDE ⇒ EVI). If this holds together with the reverse direction, it yields EDE_EVI_from_analytic_flags.

              Equations
              Instances For
                def Frourio.EVI_to_EDE_from_flags {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :

                Directional bridge (flags → EVI ⇒ EDE). Pairs with EDE_to_EVI_from_flags to produce EDE_EVI_from_analytic_flags.

                Equations
                Instances For
                  theorem Frourio.build_ede_evi_from_directional_bridges {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (Hfwd : EDE_to_EVI_from_flags F lamEff) (Hrev : EVI_to_EDE_from_flags F lamEff) :

                  Assemble the equivalence builder EDE_EVI_from_analytic_flags from the two directional bridges under the same analytic flags.

                  theorem Frourio.ede_evi_pred_from_directional_bridges {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (Hfwd : EDE_to_EVI_from_flags F lamEff) (Hrev : EVI_to_EDE_from_flags F lamEff) :
                  EDE_EVI_pred F lamEff

                  From AnalyticFlags, obtain the predicate-level equivalence EDE_EVI_pred provided the two directional bridges hold under the (weaker) core flags HalfConvex and StrongUpperBound.

                  theorem Frourio.build_EDEEVI_pack_from_directional_bridges {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (Hfwd : EDE_to_EVI_from_flags F lamEff) (Hrev : EVI_to_EDE_from_flags F lamEff) :

                  Package form: build EDEEVIAssumptions from AnalyticFlags and the two directional bridges. This is convenient for downstream pack-based assembly.

                  theorem Frourio.ede_to_evi_from_builder {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDE_EVI_from_analytic_flags F lamEff) (HC : HalfConvex F lamEff) (SUB : StrongUpperBound F) (ρ : X) :
                  EDE F ρIsEVISolution { E := F, lam := lamEff } ρ

                  Convenience: extract each implication directly from the builder and flags.

                  theorem Frourio.evi_to_ede_from_builder {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDE_EVI_from_analytic_flags F lamEff) (HC : HalfConvex F lamEff) (SUB : StrongUpperBound F) (ρ : X) :
                  IsEVISolution { E := F, lam := lamEff } ρEDE F ρ

                  Convenience: extract the reverse implication from the builder and flags.

                  theorem Frourio.ede_evi_bridge_from_pack {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDEEVIAssumptions F lamEff) :
                  theorem Frourio.ede_evi_equiv_from_flags {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (HC : HalfConvex F lamEff) (SUB : StrongUpperBound F) (H : EDE_EVI_from_analytic_flags F lamEff) (ρ : X) :
                  EDE F ρ IsEVISolution { E := F, lam := lamEff } ρ
                  theorem Frourio.ede_evi_pred_from_core_flags {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (Hfwd : EDE_to_EVI_from_flags F lamEff) (Hrev : EVI_to_EDE_from_flags F lamEff) :
                  EDE_EVI_pred F lamEff
                  theorem Frourio.ede_evi_pred_from_core_flags_via_builder {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (H : EDE_EVI_from_analytic_flags F lamEff) :
                  EDE_EVI_pred F lamEff

                  Compatibility alias: recover the old route from flags via a builder.