P4: Abstract EVI skeleton (definitions and statements only)
This file provides lightweight definitions for the EVI predicate on a metric space, a Dini-type upper differential, and statement-shaped properties for contraction, mixed-error EVI for a pair of evolutions, and a Mosco-style convergence scaffold. Heavy analytical proofs are intentionally deferred to later phases; here we only fix APIs and types.
Equations
- Frourio.d2 x y = dist x y ^ 2
Instances For
Equations
- Frourio.DiniUpperE φ t = Filter.limsup (fun (h : ℝ) => ↑((φ (t + h) - φ t) / h)) (nhdsWithin 0 (Set.Ioi 0))
Instances For
Time shift: t ↦ s + t
just shifts the evaluation point (EReal form).
Adding a constant does not change the upper Dini derivative (EReal form).
Equations
- Frourio.DiniUpper φ t = Filter.limsup (fun (h : ℝ) => (φ (t + h) - φ t) / h) (nhdsWithin 0 (Set.Ioi 0))
Instances For
Convenience lemmas for Phase P1: constants, add-constant, and time rescale.
Upper Dini derivative into EReal for a constant map is 0.
Instances For
Equations
- Frourio.IsEVISolution P u = ∀ (t : ℝ) (v : X), 1 / 2 * Frourio.DiniUpper (fun (τ : ℝ) => Frourio.d2 (u τ) v) t + P.lam * Frourio.d2 (u t) v ≤ P.E v - P.E (u t)
Instances For
Time-rescale of a curve u
by a positive factor σ
(skeleton).
Equations
- Frourio.timeRescale σ u t = u (σ * t)
Instances For
Statement-level helper: scaling rule for upper Dini derivative under
time reparameterization t ↦ σ t
(to be proven in later phases).
Equations
- Frourio.DiniUpper_timeRescale_pred σ φ t = (Frourio.DiniUpper (fun (τ : ℝ) => φ (σ * τ)) t = σ * Frourio.DiniUpper φ (σ * t))
Instances For
Equations
- Frourio.DiniUpper_add_le_pred φ ψ t = (Frourio.DiniUpper (fun (τ : ℝ) => φ τ + ψ τ) t ≤ Frourio.DiniUpper φ t + Frourio.DiniUpper ψ t)
Instances For
Right constant: DiniUpper (φ + c) ≤ DiniUpper φ + DiniUpper c
holds with equality.
EReal subadditivity for the upper Dini derivative, under the standard
exclusions for EReal
addition at (⊥, ⊤)
and (⊤, ⊥)
encoded in mathlib's
limsup_add_le
hypotheses.
Identification of Real/EReal DiniUpper under finiteness.