Documentation

Frourio.Analysis.EVI.EVICore0

P4: Abstract EVI skeleton (definitions and statements only)

This file provides lightweight definitions for the EVI predicate on a metric space, a Dini-type upper differential, and statement-shaped properties for contraction, mixed-error EVI for a pair of evolutions, and a Mosco-style convergence scaffold. Heavy analytical proofs are intentionally deferred to later phases; here we only fix APIs and types.

noncomputable def Frourio.d2 {X : Type u_1} [PseudoMetricSpace X] (x y : X) :
Equations
Instances For
    noncomputable def Frourio.DiniUpperE (φ : ) (t : ) :
    Equations
    Instances For
      theorem Frourio.DiniUpperE_shift (φ : ) (s u : ) :
      DiniUpperE (fun (τ : ) => φ (s + τ)) u = DiniUpperE φ (s + u)

      Time shift: t ↦ s + t just shifts the evaluation point (EReal form).

      theorem Frourio.DiniUpperE_add_const (φ : ) (c t : ) :
      DiniUpperE (fun (x : ) => φ x + c) t = DiniUpperE φ t

      Adding a constant does not change the upper Dini derivative (EReal form).

      theorem Frourio.DiniUpper_nonpos_of_nonincreasing (φ : ) (t : ) (Hmono : ∀ ⦃s u : ⦄, s uφ u φ s) :
      noncomputable def Frourio.DiniUpper (φ : ) (t : ) :
      Equations
      Instances For
        theorem Frourio.DiniUpper_shift (φ : ) (s t : ) :
        DiniUpper (fun (τ : ) => φ (s + τ)) t = DiniUpper φ (s + t)

        Time shift: t ↦ s + t just shifts the evaluation point (Real form).

        theorem Frourio.DiniUpper_add_const (ψ : ) (c t : ) :
        DiniUpper (fun (τ : ) => ψ τ + c) t = DiniUpper ψ t

        Adding a constant to the function does not change the upper Dini derivative (Real form).

        Convenience lemmas for Phase P1: constants, add-constant, and time rescale.

        theorem Frourio.DiniUpperE_const (c t : ) :
        DiniUpperE (fun (x : ) => c) t = 0

        Upper Dini derivative into EReal for a constant map is 0.

        theorem Frourio.DiniUpper_const (c t : ) :
        DiniUpper (fun (x : ) => c) t = 0

        Upper Dini derivative (real) for a constant map is 0.

        theorem Frourio.DiniUpperE_bounds_const_upper (c t : ) :
        ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), ((fun (x : ) => c) (t + h) - (fun (x : ) => c) t) / h M

        Forward difference quotients of a constant map are eventually bounded above by 0.

        theorem Frourio.DiniUpperE_bounds_const_lower (c t : ) :
        ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m ((fun (x : ) => c) (t + h) - (fun (x : ) => c) t) / h

        Forward difference quotients of a constant map are eventually bounded below by 0.

        theorem Frourio.DiniUpper_timeRescale_const (σ c t : ) :
        DiniUpper (fun (τ : ) => (fun (x : ) => c) (σ * τ)) t = σ * DiniUpper (fun (x : ) => c) (σ * t)
        structure Frourio.EVIProblem (X : Type u_1) [PseudoMetricSpace X] :
        Type u_1
        Instances For
          def Frourio.IsEVISolution {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u : X) :
          Equations
          Instances For
            def Frourio.timeRescale {X : Type u_1} (σ : ) (u : X) :
            X

            Time-rescale of a curve u by a positive factor σ (skeleton).

            Equations
            Instances For
              def Frourio.DiniUpper_timeRescale_pred (σ : ) (φ : ) (t : ) :

              Statement-level helper: scaling rule for upper Dini derivative under time reparameterization t ↦ σ t (to be proven in later phases).

              Equations
              Instances For
                def Frourio.DiniUpper_add_le_pred (φ ψ : ) (t : ) :
                Equations
                Instances For
                  theorem Frourio.DiniUpper_add_le_pred_const_left (c : ) (ψ : ) (t : ) :
                  DiniUpper_add_le_pred (fun (x : ) => c) ψ t

                  Left constant: DiniUpper (c + ψ) ≤ DiniUpper c + DiniUpper ψ holds with equality.

                  theorem Frourio.DiniUpper_add_le_pred_const_right (φ : ) (c t : ) :
                  DiniUpper_add_le_pred φ (fun (x : ) => c) t

                  Right constant: DiniUpper (φ + c) ≤ DiniUpper φ + DiniUpper c holds with equality.

                  theorem Frourio.DiniUpperE_add_le (φ ψ : ) (t : ) (h1 : DiniUpperE φ t DiniUpperE ψ t ) (h2 : DiniUpperE φ t DiniUpperE ψ t ) :
                  DiniUpperE (fun (τ : ) => φ τ + ψ τ) t DiniUpperE φ t + DiniUpperE ψ t

                  EReal subadditivity for the upper Dini derivative, under the standard exclusions for EReal addition at (⊥, ⊤) and (⊤, ⊥) encoded in mathlib's limsup_add_le hypotheses.

                  theorem Frourio.DiniUpper_eq_toReal_of_finite (φ : ) (t : ) (_hfin : DiniUpperE φ t DiniUpperE φ t ) (hub : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) - φ t) / h M) (hlb : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) - φ t) / h) :

                  Identification of Real/EReal DiniUpper under finiteness.