Documentation

Frourio.Analysis.PLFA.PLFACore0

Core part of PLFA/EDE/JKO: definitions and non-metric theorems. This file avoids placing a [PseudoMetricSpace X] instance in scope, so section-variable linter warnings are minimized.

def Frourio.PLFA {X : Type u_1} (F : X) (ρ : X) :
Equations
Instances For
    def Frourio.Action {X : Type u_1} (F : X) (ρ : X) :
    Equations
    Instances For
      def Frourio.EDE {X : Type u_1} (F : X) (ρ : X) :
      Equations
      Instances For
        def Frourio.JKO {X : Type u_1} (F : X) (ρ0 : X) :
        Equations
        Instances For
          def Frourio.HalfConvex {X : Type u_1} (F : X) (_lamEff : ) :
          Equations
          Instances For
            def Frourio.StrongUpperBound {X : Type u_1} (F : X) :
            Equations
            Instances For
              def Frourio.Proper {X : Type u_1} (F : X) :
              Equations
              Instances For
                def Frourio.LowerSemicontinuous {X : Type u_1} (F : X) :
                Equations
                Instances For
                  def Frourio.Coercive {X : Type u_1} (F : X) :
                  Equations
                  Instances For
                    def Frourio.JKOStable {X : Type u_1} (F : X) :
                    Equations
                    Instances For
                      def Frourio.PLFA_EDE_pred {X : Type u_1} (F : X) :
                      Equations
                      Instances For
                        def Frourio.JKO_to_PLFA_pred {X : Type u_1} (F : X) :
                        Equations
                        Instances For
                          theorem Frourio.plfa_implies_ede {X : Type u_1} (F : X) (ρ : X) (h : PLFA F ρ) :
                          EDE F ρ
                          def Frourio.EDE_to_PLFA_bridge {X : Type u_1} (F : X) :
                          Equations
                          Instances For
                            structure Frourio.PLFAEDEAssumptions {X : Type u_1} (F : X) :
                            Instances For
                              structure Frourio.JKOPLFAAssumptions {X : Type u_1} (F : X) :
                              • jko_to_plfa (ρ0 : X) : JKO F ρ0∃ (ρ : X), ρ 0 = ρ0 PLFA F ρ
                              Instances For
                                def Frourio.PLFA_EDE_from_analytic_flags {X : Type u_1} (F : X) (lamEff : ) :
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  theorem Frourio.plfa_ede_bridge_from_pack {X : Type u_1} (F : X) (lamEff : ) (H : PLFAEDEAssumptions F) :
                                  theorem Frourio.action_iff_plfa {X : Type u_1} (F : X) (ρ : X) :
                                  Action F ρ PLFA F ρ
                                  structure Frourio.AnalyticFlags {X : Type u_1} (F : X) (lamEff : ) :
                                  Instances For
                                    theorem Frourio.EDE_shift {X : Type u_1} (F : X) (ρ : X) (hEDE : EDE F ρ) (s t : ) :
                                    DiniUpperE (fun (τ : ) => F (ρ (s + τ))) t 0
                                    theorem Frourio.EDE_forwardDiff_nonpos {X : Type u_1} (F : X) (ρ : X) (hEDE : EDE F ρ) (s t : ) :
                                    DiniUpperE (fun (τ : ) => F (ρ (s + τ)) - F (ρ s)) t 0
                                    theorem Frourio.ede_to_plfa_with_gronwall_zero {X : Type u_1} (F : X) (ρ : X) (hEDE : EDE F ρ) (G0 : ∀ (s : ), (∀ (t : ), DiniUpperE (fun (τ : ) => F (ρ (s + τ)) - F (ρ s)) t 0)∀ (t : ), 0 tF (ρ (s + t)) - F (ρ s) F (ρ (s + 0)) - F (ρ s)) :
                                    PLFA F ρ
                                    theorem Frourio.G0_from_DiniUpper_nonpos {X : Type u_1} (F : X) (ρ : X) (h_usc_F : ∀ (s s' t' : ), s' < t'wSet.Icc 0 (t' - s'), y₀Set.Icc 0 (t' - s'), |y₀ - w| < (t' - s') / 4upper_semicontinuous_at_zero (fun (τ : ) => F (ρ (s + τ)) - F (ρ s)) s' y₀) (s : ) :
                                    (∀ (t : ), DiniUpperE (fun (τ : ) => F (ρ (s + τ)) - F (ρ s)) t 0)∀ (t : ), 0 tF (ρ (s + t)) - F (ρ s) F (ρ (s + 0)) - F (ρ s)

                                    Helper: Provides the G0 condition for Gronwall (nonnegative times). Now requires upper semicontinuity hypothesis for the shifted function.

                                    theorem Frourio.plfa_ede_equiv_from_flags {X : Type u_1} (F : X) (lamEff : ) (hP : Proper F) (hL : LowerSemicontinuous F) (hC : Coercive F) (HC : HalfConvex F lamEff) (SUB : StrongUpperBound F) (H : PLFA_EDE_from_analytic_flags F lamEff) (ρ : X) :
                                    PLFA F ρ EDE F ρ
                                    theorem Frourio.build_PLFAEDE_pack_from_flags {X : Type u_1} (F : X) (lamEff : ) (hP : Proper F) (hL : LowerSemicontinuous F) (hC : Coercive F) (HC : HalfConvex F lamEff) (SUB : StrongUpperBound F) (H : PLFA_EDE_from_analytic_flags F lamEff) :
                                    def Frourio.JKO_to_EDE_pred {X : Type u_1} (F : X) :

                                    Predicate: from a JKO initializer, produce an EDE evolution.

                                    Equations
                                    Instances For

                                      A geodesic structure provides geodesic interpolation between points. For any two points x and y, and t ∈ [0,1], γ(x,y,t) is a point on the geodesic.

                                      • γ : XXX
                                      • start_point (x y : X) : self.γ x y 0 = x
                                      • end_point (x y : X) : self.γ x y 1 = y
                                      • geodesic_property (x y : X) (s t : ) : 0 ss 10 tt 1dist (self.γ x y s) (self.γ x y t) = |t - s| * dist x y
                                      Instances For
                                        def Frourio.GeodesicSemiconvex {X : Type u_2} [PseudoMetricSpace X] (G : GeodesicStructure X) (F : X) (lam : ) :

                                        A function F is geodesically λ-semiconvex if it satisfies the semiconvexity inequality along geodesics.

                                        Equations
                                        Instances For
                                          structure Frourio.AnalyticFlagsReal (X : Type u_2) [PseudoMetricSpace X] (F : X) (lamEff : ) :
                                          Type u_2

                                          Real analytic flags with actual mathematical content (not just placeholders).

                                          Instances For
                                            def Frourio.lamLowerFromRealFlags {X : Type u_2} [PseudoMetricSpace X] {F : X} {lamEff : } (flags : AnalyticFlagsReal X F lamEff) :

                                            Extract the explicit lower bound on lamEff encoded in real flags.

                                            Equations
                                            Instances For
                                              theorem Frourio.lamEff_ge_fromRealFlags {X : Type u_2} [PseudoMetricSpace X] {F : X} {lamEff : } (flags : AnalyticFlagsReal X F lamEff) :

                                              The inequality lamEff ≥ lamLowerBound carried by real flags.

                                              def Frourio.ShiftedUSCHypothesis {X : Type u_2} [PseudoMetricSpace X] (F : X) (ρ : X) :

                                              Helper: USC hypothesis for shifted functions needed in the pipeline

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def Frourio.PLFA_EDE_from_real_flags {X : Type u_2} [PseudoMetricSpace X] (F : X) (lamEff : ) :

                                                Predicate for converting real analytic flags to PLFA/EDE equivalence. Note: This now requires an additional USC hypothesis

                                                Equations
                                                Instances For
                                                  def Frourio.JKO_PLFA_from_real_flags {X : Type u_2} [PseudoMetricSpace X] (F : X) (lamEff : ) :

                                                  Predicate for converting real analytic flags to JKO→PLFA implication.

                                                  Equations
                                                  Instances For
                                                    def Frourio.real_to_placeholder_flags {X : Type u_2} [PseudoMetricSpace X] (F : X) (lamEff : ) (_real_flags : AnalyticFlagsReal X F lamEff) :
                                                    AnalyticFlags F lamEff

                                                    Helper: Convert real flags to placeholder flags for compatibility.

                                                    Equations
                                                    • =
                                                    Instances For
                                                      theorem Frourio.plfa_ede_from_real_flags_impl {X : Type u_2} [PseudoMetricSpace X] (F : X) (lamEff : ) (_real_flags : AnalyticFlagsReal X F lamEff) (h_usc : ∀ (ρ : X), ShiftedUSCHypothesis F ρ) :

                                                      Bridge theorem: Real flags with USC hypothesis imply PLFA/EDE equivalence

                                                      theorem Frourio.jko_plfa_from_real_flags_impl {X : Type u_2} [PseudoMetricSpace X] (F : X) (lamEff : ) (_real_flags : AnalyticFlagsReal X F lamEff) :

                                                      Bridge theorem: Real flags imply JKO→PLFA using minimizing movement.