Core part of PLFA/EDE/JKO: definitions and non-metric theorems.
This file avoids placing a [PseudoMetricSpace X]
instance in scope,
so section-variable linter warnings are minimized.
Equations
- Frourio.Action F ρ = Frourio.PLFA F ρ
Instances For
Equations
- Frourio.EDE F ρ = ∀ (t : ℝ), Frourio.DiniUpperE (fun (τ : ℝ) => F (ρ τ)) t ≤ 0
Instances For
Equations
- Frourio.Proper F = ∃ (C : ℝ), ∀ (x : X), F x ≥ F x - C
Instances For
Equations
- Frourio.JKOStable F = ∀ (ρ0 : X), Frourio.JKO F ρ0
Instances For
Equations
- Frourio.PLFA_EDE_pred F = ∀ (ρ : ℝ → X), Frourio.PLFA F ρ ↔ Frourio.EDE F ρ
Instances For
Equations
- Frourio.JKO_to_PLFA_pred F = ∀ (ρ0 : X), Frourio.JKO F ρ0 → ∃ (ρ : ℝ → X), ρ 0 = ρ0 ∧ Frourio.PLFA F ρ
Instances For
Equations
- Frourio.EDE_to_PLFA_bridge F = ∀ (ρ : ℝ → X), Frourio.EDE F ρ → Frourio.PLFA F ρ
Instances For
Equations
Instances For
- proper : Proper F
- lsc : LowerSemicontinuous F
- coercive : Coercive F
- HC : HalfConvex F lamEff
- SUB : StrongUpperBound F
- jkoStable : JKOStable F
Instances For
Helper: Provides the G0 condition for Gronwall (nonnegative times). Now requires upper semicontinuity hypothesis for the shifted function.
Predicate: from a JKO initializer, produce an EDE evolution.
Equations
- Frourio.JKO_to_EDE_pred F = ∀ (ρ0 : X), Frourio.JKO F ρ0 → ∃ (ρ : ℝ → X), ρ 0 = ρ0 ∧ Frourio.EDE F ρ
Instances For
A geodesic structure provides geodesic interpolation between points. For any two points x and y, and t ∈ [0,1], γ(x,y,t) is a point on the geodesic.
- γ : X → X → ℝ → X
Instances For
A function F is geodesically λ-semiconvex if it satisfies the semiconvexity inequality along geodesics.
Equations
Instances For
Real analytic flags with actual mathematical content (not just placeholders).
- lsc : LowerSemicontinuous F
- geodesic : GeodesicStructure X
- semiconvex : GeodesicSemiconvex self.geodesic F lamEff
- slope_bound : ∃ (M : ℝ), 0 ≤ M ∧ ∀ (x : X), descendingSlope F x ≤ M
- lamLowerBound : ℝ
Instances For
Extract the explicit lower bound on lamEff
encoded in real flags.
Equations
- Frourio.lamLowerFromRealFlags flags = flags.lamLowerBound
Instances For
The inequality lamEff ≥ lamLowerBound
carried by real flags.
Helper: USC hypothesis for shifted functions needed in the pipeline
Equations
- One or more equations did not get rendered due to their size.
Instances For
Predicate for converting real analytic flags to PLFA/EDE equivalence. Note: This now requires an additional USC hypothesis
Equations
- Frourio.PLFA_EDE_from_real_flags F lamEff = ∀ (a : Frourio.AnalyticFlagsReal X F lamEff), (∀ (ρ : ℝ → X), Frourio.ShiftedUSCHypothesis F ρ) → Frourio.PLFA_EDE_pred F
Instances For
Predicate for converting real analytic flags to JKO→PLFA implication.
Equations
- Frourio.JKO_PLFA_from_real_flags F lamEff = ∀ (a : Frourio.AnalyticFlagsReal X F lamEff), Frourio.JKO_to_PLFA_pred F
Instances For
Helper: Convert real flags to placeholder flags for compatibility.
Equations
- ⋯ = ⋯
Instances For
Bridge theorem: Real flags with USC hypothesis imply PLFA/EDE equivalence
Bridge theorem: Real flags imply JKO→PLFA using minimizing movement.