Documentation

Frourio.Analysis.EVI.EVI

Monotonicity lemmas from Dini derivatives

theorem Frourio.limsup_nonpos_eventually_le {α : Type u_1} (u : α) (l : Filter α) (ε : ) ( : 0 < ε) :
Filter.limsup (fun (x : α) => (u x)) l 0∀ᶠ (x : α) in l, u x ε

If the limsup of a function is ≤ 0, then for any ε > 0, the function is eventually ≤ ε

theorem Frourio.local_control_from_DiniUpperE (φ : ) (t ε : ) ( : 0 < ε) (h_dini : DiniUpperE φ t 0) :
δ > 0, ∀ (h : ), 0 < h h < δ → (φ (t + h) - φ t) / h ε

If DiniUpperE φ t ≤ 0 and ε > 0, then there exists δ > 0 such that for all h with 0 < h < δ, we have (φ(t+h) - φ(t))/h ≤ ε

theorem Frourio.telescoping_sum_real (t : ) (n : ) :
iFinset.range n, (t (i + 1) - t i) = t n - t 0

Pure telescoping identity on ℝ: ∑_{i=0}^{n-1} (t (i+1) - t i) = t n - t 0.

theorem Frourio.sum_bound_from_stepwise (φ : ) (s ε : ) {N : } (t : ) (hstep : i < N, φ (s + t (i + 1)) - φ (s + t i) ε * (t (i + 1) - t i)) :
iFinset.range N, (φ (s + t (i + 1)) - φ (s + t i)) ε * iFinset.range N, (t (i + 1) - t i)

If each short subinterval (t i, t (i+1)) satisfies the incremental bound, then summing gives the bound on the whole union.

theorem Frourio.global_from_uniform_small_interval_control (φ : ) (s r ε : ) (hr_pos : 0 < r) (hL : L > 0, ∀ ⦃y z : ⦄, y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)) :
φ (s + r) φ s + ε * r

Global composition from a uniform small-interval control.

theorem Frourio.finite_chain_composition_core (φ : ) (s r ε : ) (hr_pos : 0 < r) (hε_pos : 0 < ε) (two_point_ball_local : wSet.Icc 0 r, ρw > 0, δw > 0, uSet.Icc 0 r, vSet.Icc 0 r, dist u w < ρwdist v w < ρwφ (s + v) - φ (s + u) ε * (v - u)) :
φ (s + r) φ s + ε * r

Core finite-chain composition, assuming ball-local two-point control. (lebesgue_property_from_two_point_local).

theorem Frourio.finite_chain_composition_with_usc (φ : ) (s r ε : ) (hr_pos : 0 < r) (hε_pos : 0 < ε) (h_dini_all : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (h_usc : wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) :
φ (s + r) φ s + ε * r

Correct version with upper semicontinuity hypothesis

theorem Frourio.limit_epsilon_to_zero (f g c : ) (hc : 0 c) (h : ε > 0, f g + ε * c) :
f g

If for all ε > 0 we have f ≤ g + ε*c where c ≥ 0, then f ≤ g

theorem Frourio.shifted_function_nonincreasing_with_usc (φ : ) (s : ) (h_dini_shifted : u0, DiniUpperE (fun (τ : ) => φ (s + τ) - φ s) u 0) (h_usc : t > 0, wSet.Icc 0 t, y₀Set.Icc 0 t, |y₀ - w| < t / 4upper_semicontinuous_at_zero φ s y₀) (t : ) :
t 0φ (s + t) φ s
theorem Frourio.nonincreasing_of_DiniUpperE_nonpos_with_usc (φ : ) (hD : ∀ (u : ), DiniUpperE φ u 0) (h_usc : ∀ (s t : ), s < twSet.Icc 0 (t - s), y₀Set.Icc 0 (t - s), |y₀ - w| < (t - s) / 4upper_semicontinuous_at_zero φ s y₀) (s t : ) :
s tφ t φ s

Main monotonicity theorem with upper semicontinuity: if DiniUpperE is non-positive everywhere and the function satisfies upper semicontinuity conditions, then the function is non-increasing

Generic predicate-level bridges between an abstract energy-dissipation predicate P : (X → ℝ) → (ℝ → X) → Prop and the EVI predicate. These are kept abstract here to avoid import cycles with PLFACore where EDE is defined; users can specialize P to EDE on the PLFA side.

def Frourio.EVIBridgeForward {X : Type u_1} [PseudoMetricSpace X] (P : (X)(X)Prop) (F : X) (lam : ) :

Forward bridge: from an abstract predicate P F ρ to the EVI predicate for F. Specialize P to EDE on the PLFA side to obtain EDE → EVI.

Equations
Instances For
    def Frourio.EVIBridgeBackward {X : Type u_1} [PseudoMetricSpace X] (P : (X)(X)Prop) (F : X) (lam : ) :

    Backward bridge: from the EVI predicate for F to an abstract predicate P F ρ. Specialize P to EDE on the PLFA side to obtain EVI → EDE.

    Equations
    Instances For
      def Frourio.EVIEquivBridge {X : Type u_1} [PseudoMetricSpace X] (P : (X)(X)Prop) (F : X) (lam : ) :

      Equivalence bridge: P F ρ holds iff the EVI predicate holds for F.

      Equations
      Instances For

        Geodesic uniform evaluation (two‑EVI input)

        def Frourio.GeodesicUniformEval {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

        Geodesic-uniform evaluation predicate used by two‑EVI assumptions. It provides, uniformly for all error levels η, a bridge from squared‑distance contraction to linear‑distance contraction. This matches the role geodesic regularity plays in AGS-type arguments and is sufficient for the with‑error pipeline in this phase.

        Equations
        Instances For
          theorem Frourio.geodesicUniform_to_bridge {X : Type u_1} [PseudoMetricSpace X] {P : EVIProblem X} {u v : X} (G : GeodesicUniformEval P u v) (η : ) :

          Convenience: extract a bridge at a given error level from GeodesicUniformEval.