Documentation

Frourio.Analysis.Lebesgue.Lebesgue

Lebesgue Number Lemma #

This file provides the Lebesgue number lemma for compact metric spaces, which states that for any open cover of a compact set, there exists a positive number L (the Lebesgue number) such that any subset with diameter less than L is contained in some member of the cover.

Main definitions #

Main results #

def Frourio.HasSmallDiam {X : Type u_1} [PseudoMetricSpace X] (A : Set X) (ε : ) :

A set has small diameter if all distances between its points are less than ε

Equations
Instances For
    def Frourio.LebesgueNumber {X : Type u_1} [PseudoMetricSpace X] {ι : Type u_2} (K : Set X) (U : ιSet X) (L : ) :

    A number L is a Lebesgue number for a cover if every set with diameter < L is contained in some member of the cover

    Equations
    Instances For
      theorem Frourio.lebesgue_number_exists {X : Type u_1} [PseudoMetricSpace X] {ι : Type u_2} [Nonempty ι] {K : Set X} (hK : IsCompact K) {U : ιSet X} (hU : ∀ (i : ι), IsOpen (U i)) (hcover : K ⋃ (i : ι), U i) :
      L > 0, LebesgueNumber K U L

      ルベーグ数補題(コンパクト距離空間の開被覆)

      theorem Frourio.lebesgue_property_from_two_point_local {φ : } {s r ε : } (hr : 0 < r) (_hε : 0 < ε) (two_point_ball_local : wSet.Icc 0 r, ρw > 0, δw > 0, uSet.Icc 0 r, vSet.Icc 0 r, dist u w < ρwdist v w < ρwφ (s + v) - φ (s + u) ε * (v - u)) :
      L > 0, ySet.Icc 0 r, zSet.Icc 0 r, dist y z < LwSet.Icc 0 r, δw > 0, dist y w < δw dist z w < δw φ (s + z) - φ (s + y) ε * (z - y)

      (変更版)二点局所制御を球近傍で与える仮定から、 ルベーグ数に基づく一様二点制御を得る。向き条件は用いない。