Lebesgue Number Lemma #
This file provides the Lebesgue number lemma for compact metric spaces, which states that for any open cover of a compact set, there exists a positive number L (the Lebesgue number) such that any subset with diameter less than L is contained in some member of the cover.
Main definitions #
HasSmallDiam
: Predicate for sets with diameter less than a given valueLebesgueNumber
: Property that a number L is a Lebesgue number for a cover
Main results #
lebesgue_number_exists
: Every open cover of a compact metric space has a Lebesgue numberuniform_control_from_local
: Application to EVI theory - uniform control from local controls
A set has small diameter if all distances between its points are less than ε
Instances For
def
Frourio.LebesgueNumber
{X : Type u_1}
[PseudoMetricSpace X]
{ι : Type u_2}
(K : Set X)
(U : ι → Set X)
(L : ℝ)
:
A number L is a Lebesgue number for a cover if every set with diameter < L is contained in some member of the cover
Equations
- Frourio.LebesgueNumber K U L = (0 < L ∧ ∀ A ⊆ K, Frourio.HasSmallDiam A L → ∃ (i : ι), A ⊆ U i)
Instances For
theorem
Frourio.lebesgue_number_exists
{X : Type u_1}
[PseudoMetricSpace X]
{ι : Type u_2}
[Nonempty ι]
{K : Set X}
(hK : IsCompact K)
{U : ι → Set X}
(hU : ∀ (i : ι), IsOpen (U i))
(hcover : K ⊆ ⋃ (i : ι), U i)
:
∃ L > 0, LebesgueNumber K U L
ルベーグ数補題(コンパクト距離空間の開被覆)
theorem
Frourio.lebesgue_property_from_two_point_local
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hr : 0 < r)
(_hε : 0 < ε)
(two_point_ball_local :
∀ w ∈ Set.Icc 0 r,
∃ ρw > 0,
∃ δw > 0,
∀ u ∈ Set.Icc 0 r, ∀ v ∈ Set.Icc 0 r, dist u w < ρw → dist v w < ρw → φ (s + v) - φ (s + u) ≤ ε * (v - u))
:
(変更版)二点局所制御を球近傍で与える仮定から、 ルベーグ数に基づく一様二点制御を得る。向き条件は用いない。