Documentation

Frourio.Analysis.EVI.EVICore5

@[reducible, inline]
Equations
Instances For
    Equations
    Instances For
      def Frourio.restrictNonneg {X : Type u_1} (u : Rge0X) :
      X
      Equations
      Instances For
        def Frourio.IsEVISolutionNonneg {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u : Rge0X) :

        EVI predicate on nonnegative time curves via the restrictNonneg wrapper.

        Equations
        Instances For
          def Frourio.evi_contraction_nonneg {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : Rge0X) (_hu : IsEVISolutionNonneg P u) (_hv : IsEVISolutionNonneg P v) :

          Contraction statement for nonnegative-time curves (wrapper version).

          Equations
          Instances For
            structure Frourio.MoscoSystem (ι : Type u_1) :
            Type (max (max u_1 (u_2 + 1)) (u_3 + 1))
            Instances For
              def Frourio.MoscoTight {ι : Type u_1} (S : MoscoSystem ι) :
              Equations
              Instances For
                def Frourio.MoscoM1 {ι : Type u_1} (S : MoscoSystem ι) :
                Equations
                Instances For
                  def Frourio.MoscoM2 {ι : Type u_1} (S : MoscoSystem ι) :
                  Equations
                  Instances For
                    Equations
                    Instances For
                      structure Frourio.MoscoAssumptions {ι : Type u_1} (S : MoscoSystem ι) :

                      Assumption pack using the minimal Mosco predicates, with a concrete sequential lower semicontinuity requirement for the limit energy.

                      Instances For
                        def Frourio.EVILimitHolds {ι : Type u_1} (S : MoscoSystem ι) :

                        Limit EVI property under Mosco convergence. We record that the liminf/recovery/tightness and geodesic completeness conditions are available at the limit. This predicate is deliberately lightweight and will be strengthened to true EVI statements in later phases.

                        Equations
                        Instances For

                          EVI inheritance under Mosco assumptions (theoremized skeleton). Proof sketch: Under geodesic completeness, tightness, l.s.c., and M1/M2, JKO-type minimizing movement schemes are tight, and limit curves satisfy the EVI inequality for the Γ-limit functional. Here we provide a placeholder result that will be refined in later phases.

                          Sufficient conditions tailored to an “Entropy + Dirichlet form” setting.

                          We introduce lightweight predicates named after the intended analytic assumptions and show how they imply the minimal Mosco predicates used by this file (Tight/M1/M2). These remain Prop‑valued and proof‑light.

                          Uniform entropy lower bound (coercivity surrogate) across the prelimit family: ∃ C, ∀ h x, E_h(x) ≥ -C.

                          Equations
                          Instances For

                            Dirichlet‑form liminf inequality along the identification maps.

                            Equations
                            Instances For

                              Dirichlet‑form recovery inequality (no energy inflation at a preimage).

                              Equations
                              Instances For

                                Entropy lower bound implies MoscoTight.

                                Dirichlet liminf implies MoscoM1.

                                Dirichlet recovery implies MoscoM2.

                                Build MoscoAssumptions from entropy lower bound and Dirichlet liminf/recovery statements, plus geodesic completeness (nonemptiness of the limit space).

                                From the entropy/Dirichlet sufficient conditions, obtain the minimal EVILimitHolds predicate used in this file.

                                theorem Frourio.MoscoTight_of_uniform_lower_bound {ι : Type u_1} (S : MoscoSystem ι) (C : ) (h : ∀ (h' : ι) (x : S.Xh h'), S.Eh h' x -C) :

                                A uniform lower bound on all prelimit energies implies MoscoTight.

                                theorem Frourio.MoscoM1_of_liminf_along_Th {ι : Type u_1} (S : MoscoSystem ι) (h : ∀ (h' : ι) (x : S.Xh h'), S.E (S.Th h' x) S.Eh h' x) :

                                Pointwise liminf inequality along Th is exactly MoscoM1.

                                theorem Frourio.MoscoM2_of_recovery_no_inflation {ι : Type u_1} (S : MoscoSystem ι) (h : ∀ (x : S.X), ∃ (h' : ι) (xh : S.Xh h'), S.Th h' xh = x S.Eh h' xh S.E x) :

                                Existence of recovery points with no energy inflation is exactly MoscoM2.

                                Pack of sufficient conditions (uniform bound, liminf, recovery, nonempty limit).

                                Instances For

                                  From sufficient conditions, obtain the minimal EVILimitHolds predicate.