Documentation

Frourio.Analysis.EVI.EVICore1

theorem Frourio.DiniUpper_add_le_of_finite (φ ψ : ) (t : ) (hφ_fin : DiniUpperE φ t DiniUpperE φ t ) (hψ_fin : DiniUpperE ψ t DiniUpperE ψ t ) (hsum_fin : DiniUpperE (fun (τ : ) => φ τ + ψ τ) t DiniUpperE (fun (τ : ) => φ τ + ψ τ) t ) (hubφ : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) - φ t) / h M) (hlbφ : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) - φ t) / h) (hubψ : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (ψ (t + h) - ψ t) / h M) (hlbψ : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (ψ (t + h) - ψ t) / h) (hubsum : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h M) (hlbsum : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h) :

Real bridge from the EReal inequality: if all three upper Dini derivatives are finite in EReal (neither nor ), then the real-valued additivity upper bound holds.

theorem Frourio.DiniUpper_add_le_pred_of_bounds (φ ψ : ) (t : ) (hφ_fin : DiniUpperE φ t DiniUpperE φ t ) (hψ_fin : DiniUpperE ψ t DiniUpperE ψ t ) (hsum_fin : DiniUpperE (fun (τ : ) => φ τ + ψ τ) t DiniUpperE (fun (τ : ) => φ τ + ψ τ) t ) (hubφ : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) - φ t) / h M) (hlbφ : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) - φ t) / h) (hubψ : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (ψ (t + h) - ψ t) / h M) (hlbψ : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (ψ (t + h) - ψ t) / h) (hubsum : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h M) (hlbsum : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h) :

Boundedness付き(上下の eventually 有界)での加法劣加法性。

theorem Frourio.forwardDiff_upper_bound_sum (φ ψ : ) (t : ) (hubφ : ∃ ( : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) - φ t) / h ) (hubψ : ∃ ( : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (ψ (t + h) - ψ t) / h ) :
∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h M

Supply an eventual upper bound for the forward difference quotient of a sum from eventual upper bounds of the summands.

theorem Frourio.forwardDiff_lower_bound_sum (φ ψ : ) (t : ) (hlbφ : ∃ ( : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) - φ t) / h) (hlbψ : ∃ ( : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (ψ (t + h) - ψ t) / h) :
∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h

Supply an eventual lower bound for the forward difference quotient of a sum

theorem Frourio.DiniUpper_add_le_pred_holds (φ ψ : ) (t : ) (hφ_fin : DiniUpperE φ t DiniUpperE φ t ) (hψ_fin : DiniUpperE ψ t DiniUpperE ψ t ) (hsum_fin : DiniUpperE (fun (τ : ) => φ τ + ψ τ) t DiniUpperE (fun (τ : ) => φ τ + ψ τ) t ) (hubφ : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) - φ t) / h M) (hlbφ : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) - φ t) / h) (hubψ : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (ψ (t + h) - ψ t) / h M) (hlbψ : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (ψ (t + h) - ψ t) / h) (hubsum : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h M) (hlbsum : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m (φ (t + h) + ψ (t + h) - (φ t + ψ t)) / h) :

Gronwall-type exponential bound (statement): if a nonnegative function W satisfies a linear differential inequality in the upper Dini sense, then it contracts exponentially. Used to derive EVI contraction. This is a statement-only placeholder at this phase.

Equations
Instances For

    Inhomogeneous Grönwall-type bound (statement)

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Frourio.ContractionProperty {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :
      Equations
      Instances For
        def Frourio.ContractionPropertySq {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

        Squared-distance version of the contraction property, aligned with the Gronwall inequality that yields an exp (-(2λ) t) decay.

        Equations
        Instances For
          def Frourio.Hbridge {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

          Bridge hypothesis from squared-distance contraction to linear-distance contraction. This encapsulates the usual sqrt-monotonicity and algebraic identities that convert

          d2(u t, v t) ≤ exp (-(2λ) t) · d2(u 0, v 0)

          into

          dist(u t, v t) ≤ exp (-λ t) · dist(u 0, v 0).

          At this phase, we keep it as a named predicate to be provided by later analytic lemmas, allowing higher-level theorems to depend only on this bridge without committing to heavy proofs here.

          Equations
          Instances For
            structure Frourio.BridgeAssumptions {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

            Assumption pack providing a concrete bridge from squared-distance contraction to linear-distance contraction. In later phases this will be constructed from square-root monotonicity and algebraic identities.

            Instances For
              theorem Frourio.Hbridge_from_assumptions {X : Type u_1} [PseudoMetricSpace X] {P : EVIProblem X} {u v : X} (H : BridgeAssumptions P u v) :
              Hbridge P u v

              Extract the bridge from the assumption pack.

              Helper lemmas (statement-level) for the bridge

              def Frourio.sqrt_d2_dist {X : Type u_1} [PseudoMetricSpace X] (x y : X) :

              Square root of the squared distance equals the distance (statement).

              Equations
              Instances For
                def Frourio.sqrt_mul_nonneg (a b : ) (_ha : 0 a) (_hb : 0 b) :

                Factorization of the square root of a product under nonnegativity assumptions (statement). We parameterize the nonnegativity as explicit arguments to align with Real.sqrt_mul.

                Equations
                Instances For

                  Square root of an exponential halves the exponent (statement).

                  Equations
                  Instances For