theorem
Frourio.local_control_from_DiniUpperE_right
{φ : ℝ → ℝ}
{ε : ℝ}
(t : ℝ)
(hDini : DiniUpperE φ t ≤ 0)
(hε : 0 < ε)
:
Lemma A: Local control from right-sided Dini upper derivative.
If DiniUpperE φ t ≤ 0
and ε > 0
, then there exists δ > 0
such that
for all 0 < h < δ
, we have φ(t+h) - φ(t) ≤ ε h
.
theorem
Frourio.directed_two_point_local_with_usc
{φ : ℝ → ℝ}
{s r ε w : ℝ}
(hw : w ∈ Set.Icc 0 r)
(hr : 0 < r)
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
:
Version of directed_two_point_local with upper semicontinuity hypothesis
theorem
Frourio.lebesgue_number_for_directed_cover_with_usc
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ w ∈ Set.Icc 0 r, ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
(hr : 0 < r)
:
Complete version of Lemma C: Lebesgue number with upper semicontinuity hypothesis. This is the correct formulation with all necessary hypotheses.
theorem
Frourio.uniform_small_interval_control_with_usc
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ w ∈ Set.Icc 0 r, ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
(hr : 0 < r)
:
Complete version of Proposition D with upper semicontinuity hypothesis
theorem
Frourio.global_evaluation_from_partition_with_usc
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ w ∈ Set.Icc 0 r, ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
(hr : 0 < r)
:
Corollary: Global evaluation via finite chain composition (with USC). Using partition and telescoping sum, we get φ(s+r) ≤ φ(s) + εr.
theorem
Frourio.nonincreasing_of_DiniUpperE_nonpos_right_with_usc
{φ : ℝ → ℝ}
(hDini : ∀ (t : ℝ), DiniUpperE φ t ≤ 0)
(hUSC :
∀ (s r : ℝ), r > 0 → ∀ w ∈ Set.Icc 0 r, ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(s t : ℝ)
:
Complete version with upper semicontinuity hypothesis