Documentation

Frourio.Analysis.EVI.EVICore6

theorem Frourio.local_control_from_DiniUpperE_right {φ : } {ε : } (t : ) (hDini : DiniUpperE φ t 0) ( : 0 < ε) :
δ > 0, ∀ (h : ), 0 < hh < δφ (t + h) - φ t ε * h

Lemma A: Local control from right-sided Dini upper derivative. If DiniUpperE φ t ≤ 0 and ε > 0, then there exists δ > 0 such that for all 0 < h < δ, we have φ(t+h) - φ(t) ≤ ε h.

theorem Frourio.directed_two_point_local_with_usc {φ : } {s r ε w : } (hw : w Set.Icc 0 r) (hr : 0 < r) (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) :
ρ_w > 0, δ_w > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry z|y - w| < ρ_w|z - w| < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)

Version of directed_two_point_local with upper semicontinuity hypothesis

The directed product space K = {(y,z) ∈ I×I | y ≤ z} with max metric

Equations
Instances For

    Max metric on the product space

    Equations
    Instances For
      theorem Frourio.lebesgue_number_for_directed_cover_with_usc {φ : } {s r ε : } (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) (hr : 0 < r) :
      L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)

      Complete version of Lemma C: Lebesgue number with upper semicontinuity hypothesis. This is the correct formulation with all necessary hypotheses.

      theorem Frourio.uniform_small_interval_control_with_usc {φ : } {s r ε : } (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) (hr : 0 < r) :
      L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)

      Complete version of Proposition D with upper semicontinuity hypothesis

      theorem Frourio.global_evaluation_from_partition_with_usc {φ : } {s r ε : } (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) (hr : 0 < r) :
      φ (s + r) φ s + ε * r

      Corollary: Global evaluation via finite chain composition (with USC). Using partition and telescoping sum, we get φ(s+r) ≤ φ(s) + εr.

      theorem Frourio.nonincreasing_of_DiniUpperE_nonpos_right_with_usc {φ : } (hDini : ∀ (t : ), DiniUpperE φ t 0) (hUSC : ∀ (s r : ), r > 0wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) (s t : ) :
      s tφ t φ s

      Complete version with upper semicontinuity hypothesis