Documentation

Frourio.Analysis.EVI.EVICore6Sub4

Partition Telescoping and Uniform Small-Interval Bounds #

This file implements the lemmas for removing the sorries in global_evaluation_from_partition in EVICore6.lean.

Main results #

noncomputable def Frourio.partition_point (r : ) (N i : ) :

The i-th point of the equi-partition of [0,r] with N parts

Equations
Instances For
    noncomputable def Frourio.shifted_partition_point (s r : ) (N i : ) :

    The shifted partition point S_i = s + t_i

    Equations
    Instances For
      theorem Frourio.find_fine_partition {r L : } (hr : 0 < r) (hL : 0 < L) :
      ∃ (N : ), 0 < N r / N < L

      Lemma P0: Find a fine partition If r > 0 and L > 0, then there exists N ∈ ℕ, N ≥ 1, such that r/N < L.

      theorem Frourio.partition_geometry_range (r : ) (N : ) (hN : 0 < N) (hr : 0 r) (i : ) (hi : i N) :

      Lemma P1 (Range): Partition points are in [0,r] For all i = 0,...,N, we have 0 ≤ t_i ≤ r.

      theorem Frourio.partition_geometry_monotone (r : ) (N : ) (hr : 0 r) (i : ) :
      partition_point r N i partition_point r N (i + 1) partition_point r N (i + 1) - partition_point r N i = r / N

      Lemma P1 (Monotone): Partition is monotone with equal steps For all i = 0,...,N-1, we have t_i ≤ t_{i+1} and t_{i+1} - t_i = r/N.

      theorem Frourio.telescoping_identity (g : ) (s r : ) (N : ) (hN : 0 < N) :
      iFinset.range N, (g (shifted_partition_point s r N (i + 1)) - g (shifted_partition_point s r N i)) = g (s + r) - g s

      Lemma T1: Telescoping identity For any function g : ℝ → ℝ and S_i := s + t_i, ∑{i=0}^{N-1} (g(S{i+1}) - g(S_i)) = g(S_N) - g(S_0) = g(s + r) - g(s).

      theorem Frourio.per_segment_bound {φ : } {s r ε L : } (h_control : ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)) (N : ) (hN : 0 < N) (hr : 0 < r) (hL : r / N < L) (i : ) (hi : i < N) :
      φ (shifted_partition_point s r N (i + 1)) - φ (shifted_partition_point s r N i) ε * (r / N)

      Lemma U1: Per-segment bound from uniform control Assume the uniform small-interval control on [0,r] with parameter L. If N ≥ 1 and r/N < L, then for all i = 0,...,N-1, φ(s + t_{i+1}) - φ(s + t_i) ≤ ε(t_{i+1} - t_i) = ε(r/N).

      theorem Frourio.sum_per_segment_bounds {φ : } {s r ε L : } (h_control : ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)) (N : ) (hN : 0 < N) (hr : 0 < r) (hL : r / N < L) :
      iFinset.range N, (φ (shifted_partition_point s r N (i + 1)) - φ (shifted_partition_point s r N i)) ε * r

      Lemma S1: Summing per-segment bounds Under the hypotheses of U1, ∑{i=0}^{N-1} (φ(s + t{i+1}) - φ(s + t_i)) ≤ ε ∑{i=0}^{N-1} (t{i+1} - t_i) = εr.

      theorem Frourio.global_evaluation_via_partition {φ : } {s r ε L : } (h_control : ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)) (hr : 0 < r) (hL : 0 < L) :
      φ (s + r) φ s + ε * r

      Main Proposition: Global evaluation via partition Assume the uniform small-interval control on [0,r] with constant L > 0. Pick N ≥ 1 with r/N < L. Then φ(s + r) ≤ φ(s) + εr.