Partition Telescoping and Uniform Small-Interval Bounds #
This file implements the lemmas for removing the sorries in
global_evaluation_from_partition
in EVICore6.lean.
Main results #
find_fine_partition
: Lemma P0 - Find a partition with step size < Lpartition_geometry_range
: Lemma P1 - Partition points are in [0,r]partition_geometry_monotone
: Lemma P1 - Partition is monotone with equal stepstelescoping_identity
: Lemma T1 - Telescoping sum identityper_segment_bound
: Lemma U1 - Bound on each segment from uniform controlsum_per_segment_bounds
: Lemma S1 - Sum of per-segment boundsglobal_evaluation_via_partition
: Main proposition - Global bound from partition
The i-th point of the equi-partition of [0,r] with N parts
Equations
- Frourio.partition_point r N i = ↑i * r / ↑N
Instances For
The shifted partition point S_i = s + t_i
Equations
- Frourio.shifted_partition_point s r N i = s + Frourio.partition_point r N i
Instances For
Lemma P1 (Monotone): Partition is monotone with equal steps For all i = 0,...,N-1, we have t_i ≤ t_{i+1} and t_{i+1} - t_i = r/N.
Lemma T1: Telescoping identity For any function g : ℝ → ℝ and S_i := s + t_i, ∑{i=0}^{N-1} (g(S{i+1}) - g(S_i)) = g(S_N) - g(S_0) = g(s + r) - g(s).
Lemma U1: Per-segment bound from uniform control Assume the uniform small-interval control on [0,r] with parameter L. If N ≥ 1 and r/N < L, then for all i = 0,...,N-1, φ(s + t_{i+1}) - φ(s + t_i) ≤ ε(t_{i+1} - t_i) = ε(r/N).
Lemma S1: Summing per-segment bounds Under the hypotheses of U1, ∑{i=0}^{N-1} (φ(s + t{i+1}) - φ(s + t_i)) ≤ ε ∑{i=0}^{N-1} (t{i+1} - t_i) = εr.
Main Proposition: Global evaluation via partition Assume the uniform small-interval control on [0,r] with constant L > 0. Pick N ≥ 1 with r/N < L. Then φ(s + r) ≤ φ(s) + εr.