theorem
Frourio.right_epsilon_delta_at_point
{φ : ℝ → ℝ}
{ε : ℝ}
(t : ℝ)
(hDini : DiniUpperE φ t ≤ 0)
(hε : 0 < ε)
:
Step 1 - Lemma R0: Right ε–δ from Dini If DiniUpperE φ t ≤ 0 and ε > 0, then there exists δ > 0 such that for all 0 < h < δ, we have φ(t+h) - φ(t) ≤ ε·h.
theorem
Frourio.uniformization_near_center
{φ : ℝ → ℝ}
{s r ε w : ℝ}
(hw : w ∈ Set.Icc 0 r)
(hr : 0 < r)
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
:
Step 2 - Lemma U1: Uniformization near w Given R0 at each point near w and upper semicontinuity of the quotient function, we get uniform bounds near w.
theorem
Frourio.directed_two_point_control_from_uniformization
{φ : ℝ → ℝ}
{s r ε w ρ_w δ_w : ℝ}
(h_uniform : ∀ (y h : ℝ), |y - w| < ρ_w → 0 < h → h < δ_w → quotient_function φ s y h ≤ ε)
(y z : ℝ)
:
Step 3 - Lemma U2: Directed two-point control From uniform bounds on the quotient, get the two-point estimate.
theorem
Frourio.lebesgue_uniform_small_interval
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hr : 0 < r)
(h_local :
∀ w ∈ Set.Icc 0 r,
∃ ρ_w > 0,
∃ δ_w > 0,
∀ (y z : ℝ),
y ∈ Set.Icc 0 r →
z ∈ Set.Icc 0 r →
y ≤ z → dist y w < ρ_w → dist z w < ρ_w → z - y < δ_w → φ (s + z) - φ (s + y) ≤ ε * (z - y))
:
Step 4 - Lemma L1: Lebesgue-uniform small-interval control
theorem
Frourio.lebesgue_number_for_directed_cover_complete
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ w ∈ Set.Icc 0 r, ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
(hr : 0 < r)
:
Main Theorem: Complete Lebesgue number for directed two-point cover Combining all steps to provide the complete solution.
theorem
Frourio.lebesgue_number_for_directed_cover_fixed
{φ : ℝ → ℝ}
{s r ε : ℝ}
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ w ∈ Set.Icc 0 r, ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(hε : 0 < ε)
(hr : 0 < r)
:
Alternative formulation matching EVICore6's signature exactly