Documentation

Frourio.Analysis.EVI.EVICore6Sub3

theorem Frourio.right_epsilon_delta_at_point {φ : } {ε : } (t : ) (hDini : DiniUpperE φ t 0) ( : 0 < ε) :
δ > 0, ∀ (h : ), 0 < hh < δφ (t + h) - φ t ε * h

Step 1 - Lemma R0: Right ε–δ from Dini If DiniUpperE φ t ≤ 0 and ε > 0, then there exists δ > 0 such that for all 0 < h < δ, we have φ(t+h) - φ(t) ≤ ε·h.

theorem Frourio.uniformization_near_center {φ : } {s r ε w : } (hw : w Set.Icc 0 r) (hr : 0 < r) (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) :
ρ_w > 0, δ_w > 0, ∀ (y h : ), |y - w| < ρ_w0 < hh < δ_wquotient_function φ s y h ε

Step 2 - Lemma U1: Uniformization near w Given R0 at each point near w and upper semicontinuity of the quotient function, we get uniform bounds near w.

theorem Frourio.directed_two_point_control_from_uniformization {φ : } {s r ε w ρ_w δ_w : } (h_uniform : ∀ (y h : ), |y - w| < ρ_w0 < hh < δ_wquotient_function φ s y h ε) (y z : ) :
y Set.Icc 0 rz Set.Icc 0 ry z|y - w| < ρ_w|z - w| < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)

Step 3 - Lemma U2: Directed two-point control From uniform bounds on the quotient, get the two-point estimate.

theorem Frourio.metric_bridge (y w ρ : ) :
|y - w| < ρ dist y w < ρ

Metric bridge: Convert between absolute value and distance

theorem Frourio.dist_eq_diff_for_ordered {y z : } (h : y z) :
dist y z = z - y

For y ≤ z, dist y z = z - y

theorem Frourio.lebesgue_uniform_small_interval {φ : } {s r ε : } (hr : 0 < r) (h_local : wSet.Icc 0 r, ρ_w > 0, δ_w > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zdist y w < ρ_wdist z w < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)) :
L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)

Step 4 - Lemma L1: Lebesgue-uniform small-interval control

theorem Frourio.lebesgue_number_for_directed_cover_complete {φ : } {s r ε : } (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) (hr : 0 < r) :
L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)

Main Theorem: Complete Lebesgue number for directed two-point cover Combining all steps to provide the complete solution.

theorem Frourio.lebesgue_number_for_directed_cover_fixed {φ : } {s r ε : } (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : wSet.Icc 0 r, y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) ( : 0 < ε) (hr : 0 < r) :
L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)

Alternative formulation matching EVICore6's signature exactly