Right-Hand Dini Upper Derivative: ε–δ Extraction and Filter Lemmas #
This file implements the minimal analytic lemmas needed for robust proofs of local control from right-hand Dini upper derivatives.
Main results #
lemma_R1_eventually_le_from_limsup
: Eventually ≤ from limsup ≤lemma_R2_right_filter_extraction
: Right-filter ε–δ extractionlemma_R3_ereal_coercion
: EReal coercion simplification (references to Mathlib)lemma_R4_multiply_positive
: Multiply by a positive incrementright_epsilon_delta_from_dini_nonpos
: Main corollary combining all lemmas
theorem
Frourio.lemma_R1_eventually_le_from_limsup
{α : Type u_1}
{f : α → ℝ}
{l : Filter α}
{c : ℝ}
(h : Filter.limsup (fun (x : α) => ↑(f x)) l ≤ ↑c)
(η : ℝ)
(hη : 0 < η)
:
Lemma R1: Eventually-≤ from limsup ≤ If limsup f l ≤ c, then for every η > 0, eventually f x ≤ c + η.
theorem
Frourio.lemma_R2_right_filter_extraction
{P : ℝ → Prop}
(h : ∀ᶠ (h : ℝ) in nhdsWithin 0 (Set.Ioi 0), P h)
:
Lemma R2: Right-filter ε–δ extraction If P holds eventually in nhdsWithin 0 (0,+∞), then there exists δ > 0 such that P h holds for all 0 < h < δ.
theorem
Frourio.right_epsilon_delta_from_dini_nonpos
{φ : ℝ → ℝ}
{t : ℝ}
(hDini : DiniUpperE φ t ≤ 0)
(ε : ℝ)
(hε : 0 < ε)
:
Corollary: Right ε–δ from DiniUpperE ≤ 0 Given DiniUpperE φ t ≤ 0 and ε > 0, there exists δ > 0 such that for all 0 < h < δ, we have φ(t+h) - φ(t) ≤ ε·h.