Documentation

Frourio.Analysis.EVI.EVICore6Sub2

noncomputable def Frourio.quotient_function (φ : ) (s y h : ) :

The quotient function q(y,h) = (φ(s + (y + h)) - φ(s + y)) / h for h > 0

Equations
Instances For

    Upper semicontinuity condition for the quotient function at h = 0

    Equations
    Instances For
      theorem Frourio.lemma_U1_parametric_uniformization {φ : } {s r w : } (hw : w Set.Icc 0 r) (hr : 0 < r) (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) (ε : ) ( : 0 < ε) :
      ρ_w > 0, δ_w > 0, ∀ (y h : ), |y - w| < ρ_w0 < hh < δ_wquotient_function φ s y h ε

      Lemma U1: Parametric right-ε–δ uniformization at a base point Given upper semicontinuity and Dini conditions near w, we get uniform bounds.

      theorem Frourio.lemma_U2_directed_two_point {φ : } {s r w ρ_w δ_w ε : } (h_uniform : ∀ (y h : ), |y - w| < ρ_w0 < hh < δ_wquotient_function φ s y h ε) (y z : ) :
      y Set.Icc 0 rz Set.Icc 0 ry z|y - w| < ρ_w|z - w| < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)

      Lemma U2: Directed two-point control from U1 From uniform bounds on the quotient, get the two-point estimate.

      theorem Frourio.lemma_U3_metric_form (y w ρ : ) :
      |y - w| < ρ dist y w < ρ

      Lemma U3: Metric form equivalence On ℝ, |y - w| < ρ is equivalent to dist y w < ρ.

      theorem Frourio.dist_eq_sub_of_le' {y z : } (h : y z) :
      dist y z = z - y

      For y ≤ z, dist y z = z - y

      theorem Frourio.directed_two_point_local_uniform {φ : } {s r w : } (hw : w Set.Icc 0 r) (hr : 0 < r) (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) (ε : ) ( : 0 < ε) :
      ρ_w > 0, δ_w > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zdist y w < ρ_wdist z w < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)

      Main Theorem: Directed two-point local control with uniform bounds Combining U1, U2, and U3 to get the desired control around w.

      theorem Frourio.directed_two_point_local_abs {φ : } {s r w : } (hw : w Set.Icc 0 r) (hr : 0 < r) (hDini : uSet.Icc 0 r, DiniUpperE φ (s + u) 0) (hUSC : y₀Set.Icc 0 r, |y₀ - w| < r / 4upper_semicontinuous_at_zero φ s y₀) (ε : ) ( : 0 < ε) :
      ρ_w > 0, δ_w > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry z|y - w| < ρ_w|z - w| < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)

      Alternative version using absolute values directly