Upper semicontinuity condition for the quotient function at h = 0
Equations
Instances For
theorem
Frourio.lemma_U1_parametric_uniformization
{φ : ℝ → ℝ}
{s r w : ℝ}
(hw : w ∈ Set.Icc 0 r)
(hr : 0 < r)
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(ε : ℝ)
(hε : 0 < ε)
:
Lemma U1: Parametric right-ε–δ uniformization at a base point Given upper semicontinuity and Dini conditions near w, we get uniform bounds.
theorem
Frourio.directed_two_point_local_uniform
{φ : ℝ → ℝ}
{s r w : ℝ}
(hw : w ∈ Set.Icc 0 r)
(hr : 0 < r)
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(ε : ℝ)
(hε : 0 < ε)
:
Main Theorem: Directed two-point local control with uniform bounds Combining U1, U2, and U3 to get the desired control around w.
theorem
Frourio.directed_two_point_local_abs
{φ : ℝ → ℝ}
{s r w : ℝ}
(hw : w ∈ Set.Icc 0 r)
(hr : 0 < r)
(hDini : ∀ u ∈ Set.Icc 0 r, DiniUpperE φ (s + u) ≤ 0)
(hUSC : ∀ y₀ ∈ Set.Icc 0 r, |y₀ - w| < r / 4 → upper_semicontinuous_at_zero φ s y₀)
(ε : ℝ)
(hε : 0 < ε)
:
Alternative version using absolute values directly