Documentation

Frourio.Analysis.Lebesgue.OrientedLebesgue

Oriented (Directed) Lebesgue Number Lemmas #

This file implements the oriented versions of the Lebesgue number lemma for two-point local control. These lemmas handle the case where we have directional constraints (y ≤ z) in addition to distance bounds.

Main definitions #

Main results #

theorem Frourio.two_point_hasSmallDiam_iff {X : Type u_1} [PseudoMetricSpace X] {y z : X} {L : } (hL : 0 < L) :

L1 Helper: For a two-point set {y,z} in a metric space, HasSmallDiam {y,z} L iff dist y z < L

theorem Frourio.two_point_lebesgue {ι : Type u_1} [Nonempty ι] {K : Set } (hK : IsCompact K) {U : ιSet } (hU : ∀ (i : ι), IsOpen (U i)) (hcover : K ⋃ (i : ι), U i) :
L > 0, ∀ (y z : ), y Kz Kdist y z < L∃ (i : ι), y U i z U i

Lemma L1: Two-Point Lebesgue Number Lemma Given a subset form Lebesgue lemma, we can derive a two-point version that directly gives membership instead of subset inclusion

The oriented product space K = {(y,z) ∈ I×I | y ≤ z}

Equations
Instances For
    theorem Frourio.dist_eq_sub_of_le {y z : } (h : y z) :
    dist y z = z - y

    Additional Lemma 3: In ℝ, if y ≤ z then dist y z = z - y

    theorem Frourio.oriented_lebesgue_from_two_point_local {φ : } {s r ε : } (hr : 0 < r) (h_local : wSet.Icc 0 r, ρ_w > 0, δ_w > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zdist y w < ρ_wdist z w < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)) :
    L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zdist y z < LwSet.Icc 0 r, δ_w > 0, dist y w < δ_w dist z w < δ_w φ (s + z) - φ (s + y) ε * (z - y)

    Additional Lemma 1: Oriented Lebesgue from Two-Point Local Control Given oriented two-point local control, there exists a Lebesgue number L > 0 such that any pair (y,z) with y ≤ z and dist y z < L is contained in some local control neighborhood.

    theorem Frourio.oriented_uniform_small_interval_control {φ : } {s r ε : } (hr : 0 < r) (h_local : wSet.Icc 0 r, ρ_w > 0, δ_w > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zdist y w < ρ_wdist z w < ρ_wz - y < δ_wφ (s + z) - φ (s + y) ε * (z - y)) :
    L > 0, ∀ (y z : ), y Set.Icc 0 rz Set.Icc 0 ry zz - y < Lφ (s + z) - φ (s + y) ε * (z - y)

    Additional Lemma 2: Oriented Uniform Small-Interval Control A corollary that directly gives uniform control on small oriented intervals.