Documentation

Frourio.Analysis.PLFA.PLFACore3

A compact notation for the concrete forward/backward bridges.

def Frourio.HF {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
Equations
Instances For
    def Frourio.HB {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
    Equations
    Instances For
      theorem Frourio.HF_from_pred {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (Hpred : EDE_EVI_pred F lamEff) :
      HF F lamEff

      Build HF from a pointwise equivalence predicate.

      theorem Frourio.HB_from_pred {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (Hpred : EDE_EVI_pred F lamEff) :
      HB F lamEff

      Build HB from a pointwise equivalence predicate.

      theorem Frourio.HF_from_pack {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDEEVIAssumptions F lamEff) :
      HF F lamEff

      Build HF from an EDEEVIAssumptions pack.

      theorem Frourio.HB_from_pack {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDEEVIAssumptions F lamEff) :
      HB F lamEff

      Build HB from an EDEEVIAssumptions pack.

      theorem Frourio.HF_from_global {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (G : plfaEdeEviJko_equiv F lamEff) :
      HF F lamEff

      Build HF from a global equivalence package.

      theorem Frourio.HB_from_global {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (G : plfaEdeEviJko_equiv F lamEff) :
      HB F lamEff

      Build HB from a global equivalence package.

      theorem Frourio.HF_from_flags_builder {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (H : EDE_EVI_from_analytic_flags F lamEff) :
      HF F lamEff

      Build HF from analytic flags and a builder.

      theorem Frourio.HB_from_flags_builder {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (H : EDE_EVI_from_analytic_flags F lamEff) :
      HB F lamEff

      Build HB from analytic flags and a builder.

      theorem Frourio.ede_evi_builder_from_HF_HB {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (hF : HF F lamEff) (hB : HB F lamEff) :

      If both HF and HB hold, assemble the final builder.

      def Frourio.EDE_EVI_short_input {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :

      Shortcut input for building EDE_EVI_from_analytic_flags: either a global equivalence pack, or both concrete bridges.

      Equations
      Instances For
        theorem Frourio.ede_evi_from_short_input {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (Hin : EDE_EVI_short_input F lamEff) :

        Build EDE_EVI_from_analytic_flags from the shortest available input.

        theorem Frourio.ede_evi_from_pred_short {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (Hpred : EDE_EVI_pred F lamEff) :

        From a pointwise EDE_EVI_pred, directly build the flags‑builder by materializing both concrete bridges then assembling them.

        theorem Frourio.ede_evi_from_pack_short {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (H : EDEEVIAssumptions F lamEff) :

        From an EDEEVIAssumptions pack (i.e., EDE⇔EVI pointwise), build the flags‑builder.

        structure Frourio.AnalyticBridges {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) :
        Instances For
          theorem Frourio.build_package_from_flags_and_bridges {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (B : AnalyticBridges F lamEff) :
          theorem Frourio.global_sufficient_pack_from_flags_and_ede_evi_pack {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (HplfaEde : PLFA_EDE_from_analytic_flags F lamEff) (HedeEviPack : EDEEVIAssumptions F lamEff) (HjkoPlfa : JKO_PLFA_from_analytic_flags F) :

          Assemble a GlobalSufficientPack directly from core flags and an EDEEVIAssumptions pack (EDE ⇔ EVI), alongside the non-metric builders.

          theorem Frourio.build_package_from_flags_and_ede_evi_pack {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (A : AnalyticFlags F lamEff) (HplfaEde : PLFA_EDE_from_analytic_flags F lamEff) (HedeEviPack : EDEEVIAssumptions F lamEff) (HjkoPlfa : JKO_PLFA_from_analytic_flags F) :

          Build the full equivalence from flags, EDE⇔EVI pack, and non-metric builders.

          def Frourio.TwoEVIWithForce {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def Frourio.GeodesicUniformEvalFor {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

            Shared geodesic uniform evaluation predicate specialized to P.

            Equations
            Instances For
              def Frourio.TwoEVIWithForceShared {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

              Variant of TwoEVIWithForce that uses the shared geodesic predicate.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem Frourio.twoEVIShared_to_plain {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) :

                From the shared predicate variant, recover the original TwoEVIWithForce.

                theorem Frourio.twoEVIWithForce_to_distance {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForce P u v) (Hbridge : ∀ (η : ), HbridgeWithError P u v η) :
                ∃ (η : ), (gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t))ContractionPropertyWithError P u v η
                theorem Frourio.twoEVIWithForceShared_to_distance {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForceShared P u v) (Hbridge : ∀ (η : ), HbridgeWithError P u v η) :
                ∃ (η : ), (gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t))ContractionPropertyWithError P u v η

                Shared variant: distance synchronization from TwoEVIWithForceShared.

                theorem Frourio.twoEVIWithForce_to_distance_closed {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForce P u v) (Hgr_all : ∀ (η : ), gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t)) (Hbridge : ∀ (η : ), HbridgeWithError P u v η) :
                ∃ (η : ), ContractionPropertyWithError P u v η
                theorem Frourio.twoEVIWithForceShared_to_distance_closed {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForceShared P u v) (Hgr_all : ∀ (η : ), gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t)) (Hbridge : ∀ (η : ), HbridgeWithError P u v η) :
                ∃ (η : ), ContractionPropertyWithError P u v η

                Shared variant: closed distance synchronization from TwoEVIWithForceShared.

                theorem Frourio.twoEVIWithForce_to_distance_concrete {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForce P u v) :
                ∃ (η : ), (gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t))ContractionPropertyWithError P u v η

                Two‑EVI with force: distance synchronization using the concrete with‑error bridge from EVI.lean (no external bridge hypothesis needed).

                Shared variant: distance synchronization using the concrete with‑error bridge from EVI.lean (no external bridge hypothesis needed).

                theorem Frourio.twoEVIWithForce_to_distance_concrete_closed {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForce P u v) (Hgr_all : ∀ (η : ), gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t)) :
                ∃ (η : ), ContractionPropertyWithError P u v η

                Closed form: if a Grönwall predicate holds for all η, then the two‑EVI with force yields a distance synchronization bound via the concrete bridge.

                theorem Frourio.twoEVIWithForceShared_to_distance_concrete_closed {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : TwoEVIWithForceShared P u v) (Hgr_all : ∀ (η : ), gronwall_exponential_contraction_with_error_half_pred P.lam η fun (t : ) => d2 (u t) (v t)) :
                ∃ (η : ), ContractionPropertyWithError P u v η

                Shared variant: closed form of the concrete with‑error synchronization.

                theorem Frourio.ede_iff_evi {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (G : plfaEdeEviJko_equiv F lamEff) (ρ : X) :
                EDE F ρ IsEVISolution { E := F, lam := lamEff } ρ
                theorem Frourio.evi_iff_plfa {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (G : plfaEdeEviJko_equiv F lamEff) (ρ : X) :
                IsEVISolution { E := F, lam := lamEff } ρ PLFA F ρ
                theorem Frourio.jko_to_evi {X : Type u_1} [PseudoMetricSpace X] (F : X) (lamEff : ) (G : plfaEdeEviJko_equiv F lamEff) (ρ0 : X) :
                JKO F ρ0∃ (ρ : X), ρ 0 = ρ0 IsEVISolution { E := F, lam := lamEff } ρ