Documentation

Frourio.Algebra.StructureSequenceCore

noncomputable def Frourio.S (Λ : ) (n : ) :

構造列 S_n = Λ^n - Λ^{-n}

Equations
Instances For
    theorem Frourio.S_neg (Λ : ) (n : ) :
    S Λ (-n) = -S Λ n

    S_n の基本的な性質:S_{-n} = -S_n

    @[simp]
    theorem Frourio.S_zero (Λ : ) :
    S Λ 0 = 0

    S_0 = 0

    theorem Frourio.S_one (Λ : ) :
    S Λ 1 = Λ - 1 / Λ

    S_1 の値

    theorem Frourio.S_add (Λ : ) ( : 0 < Λ) (m n : ) :
    S Λ (m + n) = S Λ m * Λ ^ n + S Λ n * Λ ^ (-m)

    S_n の加法公式: S_{m+n} = S_m Λ^n + S_n Λ^{-m}

    theorem Frourio.two_sinh_neg (t : ) :
    2 * Real.sinh (-t) = -(2 * Real.sinh t)

    Helper: 2 * sinh is odd.

    D1: Hyperbolic representation via exponential identities.

    theorem Frourio.exp_nat_mul_log_eq_pow (Λ : ) (hΛpos : 0 < Λ) (n : ) :
    Real.exp (n * Real.log Λ) = Λ ^ n

    Helper: exp of a natural multiple of log equals pow.

    theorem Frourio.S_as_exp_sub_exp_neg_ofNat (Λ : ) (hΛpos : 0 < Λ) (n : ) :
    S Λ n = Real.exp (n * Real.log Λ) - Real.exp (-(n * Real.log Λ))

    Exponential-difference form for natural indices.

    theorem Frourio.S_as_sinh_ofNat (Λ : ) (hΛpos : 0 < Λ) (n : ) :
    S Λ n = 2 * Real.sinh (n * Real.log Λ)

    Hyperbolic form via sinh for natural indices.

    theorem Frourio.S_as_sinh_int (Λ : ) (hΛpos : 0 < Λ) (m : ) :
    S Λ m = 2 * Real.sinh (m * Real.log Λ)

    Hyperbolic form via sinh for integer indices.

    Basic inequalities derived from the exponential form (Λ > 1).

    theorem Frourio.S_nonneg_of_nat (Λ : ) (hΛgt1 : 1 < Λ) (n : ) :
    0 S Λ n
    theorem Frourio.S_pos_of_nat_pos (Λ : ) (hΛgt1 : 1 < Λ) {n : } (hn : 0 < n) :
    0 < S Λ n
    theorem Frourio.S_ne_zero_of_pos_ne_one (Λ : ) (hΛpos : 0 < Λ) (hΛne1 : Λ 1) {n : } (hn : 0 < n) :
    S Λ n 0