Documentation

Frourio.Algebra.StructureSequence

D2: Φ-numbers and Φ-binomials (safe endpoints under nonzero assumptions)

@[reducible, inline]
noncomputable abbrev Frourio.phiNum (Λ : ) (n : ) :
Equations
Instances For
    noncomputable def Frourio.phiFactorial (Λ : ) (n : ) :

    Φ-階乗の定義

    Equations
    Instances For

      Φ-階乗の基本値

      theorem Frourio.phiFactorial_succ (Λ : ) (n : ) :
      phiFactorial Λ (n + 1) = phiFactorial Λ n * S Λ ↑(n + 1)
      noncomputable def Frourio.phiDiff (Λ : ) (f : ) :

      Φ差分作用素の定義(簡略版)

      Equations
      Instances For
        noncomputable def Frourio.phiDiffIter (Λ : ) :
        ()

        Φ差分の反復作用素 D_Φ^n を再帰で定義

        Equations
        Instances For
          theorem Frourio.phiDiff_leibniz (Λ : ) (f g : ) :
          (phiDiff Λ fun (x : ) => f x * g x) = fun (x : ) => f (Λ * x) * phiDiff Λ g x + g (x / Λ) * phiDiff Λ f x

          Φ差分の一次Leibniz(積)公式

          noncomputable def Frourio.phiBinom (Λ : ) (n k : ) :

          Φ-二項係数の定義

          Equations
          Instances For
            theorem Frourio.phiBinom_zero_of_factorial_ne (Λ : ) (n : ) (h : phiFactorial Λ n 0) :
            phiBinom Λ n 0 = 1

            端点その1(安全版): 分母が 0 とならない場合、φ-二項係数は 1。

            theorem Frourio.phiBinom_self_of_factorial_ne (Λ : ) (n : ) (h : phiFactorial Λ n 0) :
            phiBinom Λ n n = 1

            端点その2(安全版): 分母が 0 とならない場合、φ-二項係数は 1。

            theorem Frourio.phiBinom_zero_of_Sone_ne (Λ : ) (n : ) (hΛpos : 0 < Λ) (hS1 : S Λ 1 0) :
            phiBinom Λ n 0 = 1

            端点(設計仮定版): 0 < Λ かつ S Λ 1 ≠ 0 の下で端点は 1。

            theorem Frourio.phiBinom_self_of_Sone_ne (Λ : ) (n : ) (hΛpos : 0 < Λ) (hS1 : S Λ 1 0) :
            phiBinom Λ n n = 1

            端点(設計仮定版): 0 < Λ かつ S Λ 1 ≠ 0 の下で端点は 1。

            theorem Frourio.higher_leibniz_base (Λ : ) (f g : ) :
            ((phiDiffIter Λ 0 fun (x : ) => f x * g x) = fun (x : ) => f x * g x) (phiDiffIter Λ 1 fun (x : ) => f x * g x) = fun (x : ) => f (Λ * x) * phiDiff Λ g x + g (x / Λ) * phiDiff Λ f x

            高階Leibniz(n=0,1 の基底形)

            theorem Frourio.phiDiff_add (Λ : ) (f g : ) :
            (phiDiff Λ fun (x : ) => f x + g x) = fun (x : ) => phiDiff Λ f x + phiDiff Λ g x

            Linearity of phiDiff over addition.

            theorem Frourio.higher_leibniz_two (Λ : ) (f g : ) :
            (phiDiffIter Λ 2 fun (x : ) => f x * g x) = fun (x : ) => f (Λ * (Λ * x)) * phiDiff Λ (phiDiff Λ g) x + phiDiff Λ g (x / Λ) * phiDiff Λ (fun (t : ) => f (Λ * t)) x + (g (Λ * x / Λ) * phiDiff Λ (phiDiff Λ f) x + phiDiff Λ f (x / Λ) * phiDiff Λ (fun (t : ) => g (t / Λ)) x)

            Second-order Leibniz formula (n=2) for phiDiffIter.

            theorem Frourio.phiDiff_scale_invariant (Λ c : ) (hc : c 0) (f : ) :
            (phiDiff Λ fun (x : ) => f (c * x)) = fun (x : ) => c * phiDiff Λ f (c * x)

            Φ差分のスケール不変性

            theorem Frourio.phi_monomial_action (Λ : ) (n : ) (x : ) (hx : x 0) :
            phiDiff Λ (fun (y : ) => y ^ (n + 1)) x = (Λ ^ (n + 1) - 1 / Λ ^ (n + 1)) / (Λ - 1 / Λ) * x ^ n

            Φ系での単項式作用:D_Φ[x^{n+1}] = [n+1]_Φ · x^n ここで [m]_Φ = S Λ m / S Λ 1

            theorem Frourio.S_at_one (n : ) :
            S 1 n = 0

            追加: Λ = 1 のとき S Λ n = 0

            theorem Frourio.S_odd_function (Λ : ) (n : ) :
            S Λ (-n) = -S Λ n

            追加: S_n は n について奇関数(S_neg の別名)

            theorem Frourio.phiBinom_symm (Λ : ) (n k : ) (hk : k n) :
            phiBinom Λ n k = phiBinom Λ n (n - k)

            追加: φ-二項係数の対称性

            D2 Pascal-type recursion (candidate statement)

            The exact coefficient structure for the Φ-analog may require additional assumptions and algebraic lemmas. We place a strong-assumption candidate statement here and leave the proof as a TODO.

            theorem Frourio.phiBinom_pascal_candidate (Λ : ) (_hΛpos : 0 < Λ) (_hS1 : S Λ 1 0) (n k : ) (_hk₁ : 0 < k) (hk₂ : k n) :
            phiBinom Λ (n + 1) k = phiBinom Λ n k * S Λ ↑(n + 1) / S Λ ↑(n + 1 - k)

            D3: General higher-order Leibniz (statement scaffold)

            We provide a canonical RHS combining iterates using a Φ-binom-like weight and scale-shifted arguments. The precise form is subject to refinement.

            noncomputable def Frourio.higherLeibnizRHS (Λ : ) (n : ) (f g : ) :
            Equations
            Instances For
              theorem Frourio.higher_leibniz_general (Λ : ) (_hΛpos : 0 < Λ) (f g : ) (n : ) :
              (phiDiffIter Λ n fun (x : ) => f x * g x) = higherLeibnizRHS Λ n f g

              Lightweight examples (sanity checks for n = 1, 2)