D2: Φ-numbers and Φ-binomials (safe endpoints under nonzero assumptions)
Φ差分の反復作用素 D_Φ^n を再帰で定義
Equations
- Frourio.phiDiffIter Λ 0 x✝ = x✝
- Frourio.phiDiffIter Λ n.succ x✝ = Frourio.phiDiff Λ (Frourio.phiDiffIter Λ n x✝)
Instances For
Φ-二項係数の定義
Equations
- Frourio.phiBinom Λ n k = Frourio.phiFactorial Λ n / (Frourio.phiFactorial Λ k * Frourio.phiFactorial Λ (n - k))
Instances For
端点その1(安全版): 分母が 0 とならない場合、φ
-二項係数は 1。
端点その2(安全版): 分母が 0 とならない場合、φ
-二項係数は 1。
Second-order Leibniz formula (n=2) for phiDiffIter
.
D2 Pascal-type recursion (candidate statement)
The exact coefficient structure for the Φ-analog may require additional assumptions and algebraic lemmas. We place a strong-assumption candidate statement here and leave the proof as a TODO.
D3: General higher-order Leibniz (statement scaffold)
We provide a canonical RHS combining iterates using a Φ-binom-like weight and scale-shifted arguments. The precise form is subject to refinement.
Equations
- Frourio.higherLeibnizRHS Λ n f g = Frourio.phiDiffIter Λ n fun (x : ℝ) => f x * g x
Instances For
Lightweight examples (sanity checks for n = 1, 2)