Documentation

Frourio.Analysis.PLFA.EDEtoEVI

theorem Frourio.limsup_le_of_eventually_le_right {u : } {c : } :
(∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), u h c)(∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), u h M)(∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m u h)Filter.limsup u (nhdsWithin 0 (Set.Ioi 0)) c

On the right neighborhood filter nhdsWithin 0 (Ioi 0), if u ≤ c eventually and u is eventually bounded from both sides, then limsup u ≤ c (real version). This follows the pattern from DiniUpper_eq_toReal_of_finite but for general functions.

theorem Frourio.right_filter_limsup_le_of_bounded {u : } {c : } (hub : ∃ (M : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), u h M) (hlb : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m u h) (hbound : ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), u h c) :

General right-filter bridge: if u is eventually bounded from both sides and eventually ≤ c, then its real limsup ≤ c. This generalizes the pattern from DiniUpper_eq_toReal_of_finite.

theorem Frourio.right_filter_limsup_le_simple {u : } {c : } (hlb : ∃ (m : ), ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), m u h) (hbound : ∀ᶠ (h : ) in nhdsWithin 0 (Set.Ioi 0), u h c) :

Simplified version when the eventual upper bound c also serves as a global upper bound

theorem Frourio.dini_upper_le_of_quotient_bounded {f : } {t c m : } (hub : hSet.Ioo 0 1, (f (t + h) - f t) / h c) (hlb : hSet.Ioo 0 1, m (f (t + h) - f t) / h) :

Helper lemma for DiniUpper bound: if quotients are bounded from both sides, DiniUpper is bounded

theorem Frourio.dini_upper_distance_squared {X : Type u_1} [PseudoMetricSpace X] (ρ : X) (v : X) (t : ) (hLipschitz : L > 0, ∀ (s₁ s₂ : ), |s₁ - s₂| < 1dist (ρ s₁) (ρ s₂) L * |s₁ - s₂|) :
∃ (C : ), DiniUpper (fun (τ : ) => d2 (ρ τ) v) t C

Distance squared along a curve has controlled Dini derivative

theorem Frourio.young_inequality_evi (a b ε : ) ( : 0 < ε) :
a * b ε * a ^ 2 / 2 + b ^ 2 / (2 * ε)

Young's inequality for the EVI proof

theorem Frourio.geodesic_interpolation_estimate {X : Type u_1} [PseudoMetricSpace X] {G : GeodesicStructure X} (F : X) (lamEff : ) (hSemiconvex : GeodesicSemiconvex G F lamEff) (x y : X) (t : ) (ht : t Set.Icc 0 1) :
F (G.γ x y t) (1 - t) * F x + t * F y - lamEff / 2 * t * (1 - t) * dist x y ^ 2

Geodesic interpolation estimate

Upper semicontinuous function using the quotient-based formulation Compatible with the EVI framework from EVICore6Sub2

Equations
Instances For
    theorem Frourio.upperSemicontinuous_add_continuous {f g : } (hf : UpperSemicontinuous f) (hg_lip_bound : ∀ (x ε : ), ε > 0δ > 0, ∀ (y z : ), |y - x| < δ|z - x| < δ|g y - g z| < ε / 2 * |y - z|) :

    Helper: Sum of USC function and locally Lipschitz continuous function is USC The key additional assumption is that for each ε > 0, we can find a neighborhood where the Lipschitz constant is bounded by ε/2

    theorem Frourio.ereal_limsup_le_of_eventually_le {α : Type u_2} {f : αEReal} {l : Filter α} {C : EReal} (h : ∀ᶠ (x : α) in l, f x C) :

    EReal version: Limsup is bounded by a constant if the function is eventually bounded

    theorem Frourio.ereal_limsup_const {α : Type u_2} {l : Filter α} {C : EReal} [l.NeBot] :
    Filter.limsup (fun (x : α) => C) l = C

    EReal version: Limsup of a constant function equals the constant

    theorem Frourio.DiniUpperE_lam_d2_bound_explicit {X : Type u_2} [PseudoMetricSpace X] (ρ : X) (v : X) (t lam L : ) (hL_pos : 0 < L) (hL_bound : sSet.Ioo (t - 1) (t + 1), dist (ρ s) (ρ t) L * |s - t|) :
    DiniUpperE (fun (τ : ) => lam * d2 (ρ τ) v) t ↑(|lam| * (2 * L * dist (ρ t) v + L ^ 2))

    DiniUpperE of λ times squared distance along a Lipschitz curve

    theorem Frourio.DiniUpperE_lam_d2_bound {X : Type u_2} [PseudoMetricSpace X] (ρ : X) (v : X) (t lam : ) (hLip : L > 0, sSet.Ioo (t - 1) (t + 1), dist (ρ s) (ρ t) L * |s - t|) :
    ∃ (C : EReal), DiniUpperE (fun (τ : ) => lam * d2 (ρ τ) v) t C

    DiniUpperE of λ times squared distance along a Lipschitz curve