Documentation

Frourio.Geometry.Rigidity

Phase H: Rigidity and Equality Conditions for Meta-Variational Principle #

This file implements Phase H of the meta-variational principle, characterizing when the FG★ inequality becomes an equality and establishing rigidity results.

Main definitions #

Main theorems #

Implementation notes #

The equality case reveals deep geometric structure: the Doob transform must be harmonic (∇²log h ≡ 0), the spectral phases must align, and the weights must satisfy a harmonic distribution condition.

Phase alignment condition: all spectral components have aligned phases. In the equality case, the spectral terms must be phase-coherent.

  • phase :

    There exists a common phase function

  • amplitude : Fin m

    Amplitude coefficients for each component

  • alignment (i j : Fin m) (lam : ) : 0 lam∃ (c : ), c 0 cfg.α i * (Real.exp (-cfg.τ i * lam) - 1) = c * cfg.α j * (Real.exp (-cfg.τ j * lam) - 1)

    Each spectral component aligns: there exist c_i > 0 such that the i-th spectral term equals c_i * cos(phase(λ)) or similar. For our simplified model: spectral terms are proportional.

  • phase_continuous : Continuous self.phase

    The phase is continuous

Instances For

    Harmonic weight distribution: weights satisfy a harmonic balance condition. Note: The exact relation depends on the specific model. Here we require that weights are in a special configuration relative to scales. Prerequisites: ∑ α_i = 0 (from MultiScaleConfig), τ_i > 0

    • harmonic_relation (i j : Fin m) : i j∃ (c : ), c 0 cfg.α i * cfg.τ j = c * cfg.α j * cfg.τ i

      The weights satisfy a harmonic relation (model-dependent). For simplicity, we require proportionality conditions.

    • nonzero_weights : ∃ (i : Fin m) (j : Fin m), i j cfg.α i 0 cfg.α j 0

      At least two weights are non-zero (non-degeneracy)

    Instances For

      Equal ripple saturation: the spectral symbol achieves its supremum uniformly. This is relevant for the equality case in the spectral estimate.

      Instances For
        structure Frourio.DoobHarmonic {X : Type u_1} [MeasurableSpace X] (h : X) :

        Doob harmonic condition: the Doob function h is harmonic

        • h_pos (x : X) : 0 < h x

          h is positive

        • hessian_zero : Prop

          The Hessian of log h vanishes: ∇²(log h) = 0

        • smooth : Prop

          h is smooth enough for the Hessian to be defined

        Instances For
          structure Frourio.EqualityCaseFlags {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) :

          Flags for equality case in the FG★ inequality

          Instances For
            theorem Frourio.FGStar_rigidity {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) (eq_flags : EqualityCaseFlags H cfg Γ κ μ flags) :

            Main rigidity theorem: characterization of equality in FG★

            structure Frourio.Gamma2 {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (H : HeatSemigroup X) :
            Type u_1

            The Γ₂ operator (iterated carré du champ)

            • op : (X)(X)X

              The Γ₂ operator: Γ₂(f,g) = ½(LΓ(f,g) - Γ(Lf,g) - Γ(f,Lg))

            • symmetric (f g : X) : self.op f g = self.op g f

              Γ₂ is symmetric

            • bochner : (X)Prop

              Bochner-Weitzenböck formula connection

            Instances For
              noncomputable def Frourio.bakry_emery_degradation {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (H : HeatSemigroup X) (Γ₂ : Gamma2 Γ H) (h : X) :

              Helper: Bakry-Émery degradation measures curvature loss. In the full BE theory, for a Doob transform with function h > 0:

              • The transformed measure is dμ_h = h²dμ
              • The transformed Dirichlet form is ℰ_h(f,f) = ∫ h² Γ(f,f) dμ
              • The degradation ε(h) measures how much the curvature-dimension condition degrades
              • Formally: ε(h) = sup_φ {∫ Γ₂(log h, φ) dμ / ‖φ‖²}
              • Key fact: ε(h) = 0 iff ∇²(log h) = 0 (h is log-harmonic)

              For our implementation, we use a conditional definition.

              Equations
              Instances For
                def Frourio.is_harmonic {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (H : HeatSemigroup X) (Γ₂ : Gamma2 Γ H) (h : X) :

                A function is harmonic if Γ₂(log h, log h) = 0 everywhere

                Equations
                Instances For
                  theorem Frourio.doob_rigidity_forward {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] (H : HeatSemigroup X) (Γ : CarreDuChamp X) (Γ₂ : Gamma2 Γ H) (h : X) (ε_h : ) (h_degrad : ε_h = bakry_emery_degradation Γ H Γ₂ h) :
                  ε_h = 0is_harmonic Γ H Γ₂ h

                  Doob rigidity (forward direction): vanishing degradation implies harmonicity. The converse requires additional BE theory assumptions.

                  structure Frourio.BakryEmeryHypothesis {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (H : HeatSemigroup X) (Γ₂ : Gamma2 Γ H) :

                  BE hypothesis for the converse of Doob rigidity

                  • harmonic_implies_zero (h : X) (h_pos : ∀ (x : X), 0 < h x) : is_harmonic Γ H Γ₂ hbakry_emery_degradation Γ H Γ₂ h = 0

                    Under sufficient regularity and curvature conditions, harmonicity implies vanishing degradation

                  Instances For
                    theorem Frourio.doob_rigidity_reverse {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] (H : HeatSemigroup X) (Γ : CarreDuChamp X) (Γ₂ : Gamma2 Γ H) (be_hyp : BakryEmeryHypothesis Γ H Γ₂) (h : X) (h_pos : ∀ (x : X), 0 < h x) :
                    is_harmonic Γ H Γ₂ hbakry_emery_degradation Γ H Γ₂ h = 0

                    Doob rigidity (reverse direction): harmonicity implies vanishing degradation under BE theory assumptions

                    theorem Frourio.spectral_phase_rigidity {m : ℕ+} (cfg : MultiScaleConfig m) :
                    ∃ (A : ), ∀ (lam : ), 0 lam|spectralSymbol cfg lam| |A|

                    Spectral boundedness via sup-norm: for any configuration cfg, the spectral symbol is uniformly bounded on λ ≥ 0 by its sup-norm.

                    structure Frourio.Eigenfunction {X : Type u_1} [MeasurableSpace X] (H : HeatSemigroup X) :
                    Type u_1

                    Eigenfunction structure: function satisfying Lφ = λφ for the generator L

                    Instances For
                      theorem Frourio.eigenfunction_from_FGStar_equality {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) (φ : X) (_hφ_L2 : MeasureTheory.MemLp φ 2 μ) (h_nonzero : ∃ (x : X), φ x 0) (h_sharp : ∃ (cs : CauchySchwarzSharp H cfg Γ κ μ flags.fgstar_const), cs.eigenfunction = φ) :
                      ∃ (lam : ), ∀ (x : X), multiScaleDiff H cfg φ x = lam * φ x

                      Weak eigenfunction statement: if the Cauchy–Schwarz equality witness identifies φ as the sharp function, then φ is an eigenfunction of the multi‑scale operator multiScaleDiff.

                      theorem Frourio.FGStar_equality_from_eigenfunction {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) (φ : X) (h_nonzero : ∃ (x : X), φ x 0) (h_eig : ∃ (lam : ), ∀ (x : X), multiScaleDiff H cfg φ x = lam * φ x) :
                      ∃ (cs : CauchySchwarzSharp H cfg Γ κ μ flags.fgstar_const), cs.eigenfunction = φ

                      Weak converse: a multi‑scale eigenfunction yields a CS‑equality witness.

                      theorem Frourio.FGStar_equality_from_rigidity {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) :

                      Converse to rigidity: these conditions imply equality in FG★

                      Hypothesis for critical configuration uniqueness

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem Frourio.critical_configuration_unique {m : ℕ+} (cfg : MultiScaleConfig m) (h_unique : CriticalUniquenessHypothesis cfg) (cfg' : MultiScaleConfig m) :
                        spectralSymbolSupNorm cfg' = spectralSymbolSupNorm cfgHarmonicWeights cfg'∃ (σ : Fin m Fin m), ∀ (i : Fin m), cfg'.α i = cfg.α (σ i) cfg'.τ i = cfg.τ (σ i)

                        Uniqueness of critical configuration under rigidity

                        theorem Frourio.FGStar_rigidity_complete {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) (φ : X) (_hφ : MeasureTheory.MemLp φ 2 μ) (h_nonzero : ∃ (x : X), φ x 0) :
                        (∃ (cs : CauchySchwarzSharp H cfg Γ κ μ flags.fgstar_const), cs.eigenfunction = φ) ∃ (lam : ), ∀ (x : X), multiScaleDiff H cfg φ x = lam * φ x

                        Weak rigidity characterization: CS equality witness iff multiScaleDiff eigenfunction

                        theorem Frourio.spectral_gap_from_rigidity {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (_flags : MetaEVIFlags H cfg Γ κ μ) :
                        (∃ gap > 0, ∀ (φ : X), MeasureTheory.MemLp φ 2 μφ 0( (x : X), Γ.Γ φ φ x μ) / (x : X), φ x ^ 2 μ gap)gap > 0, ∀ (φ : X), MeasureTheory.MemLp φ 2 μφ 0( (x : X), Γ.Γ φ φ x μ) / (x : X), φ x ^ 2 μ gap

                        Spectral gap characterization via rigidity