Documentation

Frourio.Geometry.GInvariance

G-Invariance for Meta-Variational Principle #

This file defines the symmetry group G and invariance properties for the meta-variational principle framework.

Main definitions #

Implementation notes #

The group G = Aut_ℰ(X) ⋉ (Doob × Scale × Reparam) acts on all components of the meta-variational principle, preserving the main inequality FG★.

noncomputable def Frourio.spectral_penalty_term {m : ℕ+} (cfg : MultiScaleConfig m) (C_energy κ : ) :

Spectral penalty term for FG★

Equations
Instances For

    FG★ constant structure (simplified for G-invariance)

    • C_energy :

      Energy constant from FG★ inequality

    • C_energy_pos : 0 < self.C_energy

      Positivity constraint

    • C_energy_nonneg : 0 self.C_energy

      Non-negativity (weaker than positivity, for compatibility)

    Instances For
      structure Frourio.MetaEVIFlags {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) :

      Meta EVI flags structure (simplified for G-invariance)

      Instances For
        theorem Frourio.withDensity_one {X : Type u_1} [MeasurableSpace X] (ν : MeasureTheory.Measure X) :
        (ν.withDensity fun (x : X) => 1) = ν

        Technical lemma: withDensity by constant 1 is identity. This is a standard fact in measure theory.

        Automorphism of X preserving the Dirichlet form ℰ

        Instances For

          Scale transformation on multi-scale parameters

          • σ :

            The scaling factor σ > 0

          • hσ_pos : 0 < self.σ

            Positivity constraint

          Instances For

            Apply scale transformation to configuration

            Equations
            • s.apply cfg = { α := cfg.α, τ := fun (i : Fin m) => s.σ * cfg.τ i, hτ_pos := , hα_sum := , hα_bound := }
            Instances For

              Time reparametrization for curves

              • θ :

                The reparametrization function θ : [0,1] → [0,1]

              • mono : Monotone self.θ

                Monotone increasing

              • init : self.θ 0 = 0

                Boundary conditions

              • terminal : self.θ 1 = 1
              • continuous : Continuous self.θ

                Continuity of the reparametrization function

              Instances For
                structure Frourio.GAction (X : Type u_1) [MeasurableSpace X] (m : ℕ+) :
                Type u_1

                The symmetry group G for the meta-variational principle. G = Aut_ℰ(X) ⋉ (Doob × ℝ₊ × Reparam)

                • Dirichlet form automorphism component

                • doob_h : X

                  Doob transform component (h function)

                • doob_h_pos (x : X) : 0 < self.doob_h x

                  Positivity of Doob function

                • scale : ScaleTransform m

                  Scale transformation component

                • reparam : TimeReparam

                  Time reparametrization component

                Instances For

                  Action of G on measures

                  Equations
                  Instances For

                    Action of G on multi-scale configuration

                    Equations
                    Instances For

                      Invariance of entropy under G-action (up to additive constant)

                      Equations
                      Instances For

                        Invariance of modified distance under G-action

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          Invariance of multi-scale difference operator under pullback

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Scale invariance of spectral symbol sup-norm. Under scale transformation τ ↦ στ with spectral variable λ ↦ λ/σ, the sup-norm ‖ψ_m‖_∞ is exactly preserved.

                            noncomputable def Frourio.pushforward {X : Type u_1} {Y : Type u_2} [MeasurableSpace X] [MeasurableSpace Y] (f : XY) (_hf : Measurable f) (μ : MeasureTheory.Measure X) :

                            Pushforward of a measure by a measurable function

                            Equations
                            Instances For
                              def Frourio.pullback {X : Type u_1} {Y : Type u_2} (f : XY) (φ : Y) :
                              X

                              Pullback of a function by a measurable function

                              Equations
                              Instances For

                                Entropy is invariant under pushforward by measure-preserving maps

                                theorem Frourio.dm_pullback_pushforward_compatible {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (g : DirichletAutomorphism) (h_inv : dm_G_invariant H Γ) (ρ₀ ρ₁ : MeasureTheory.Measure X) :
                                dm H cfg Γ κ (pushforward g.toFun μ) (pushforward g.toFun ρ₀) (pushforward g.toFun ρ₁) = dm H cfg Γ κ μ ρ₀ ρ₁

                                Distance compatibility under pullback/pushforward

                                theorem Frourio.carre_du_champ_pullback {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (g : DirichletAutomorphism) (φ ψ : X) :
                                Γ.Γ (pullback g.toFun φ) (pullback g.toFun ψ) = pullback g.toFun (Γ.Γ φ ψ)

                                Carré du Champ operator compatibility with pullback

                                Entropy functional with pushforward/pullback structure

                                Instances For

                                  Modified distance with pullback/pushforward structure

                                  Instances For
                                    theorem Frourio.entropy_transform_formula {X : Type u_1} [MeasurableSpace X] (μ ρ : MeasureTheory.Measure X) (g : DirichletAutomorphism) (h : X) (h_inv : InformationTheory.klDiv ((pushforward g.toFun ρ).withDensity fun (x : X) => ENNReal.ofReal (h x ^ 2)) ((pushforward g.toFun μ).withDensity fun (x : X) => ENNReal.ofReal (h x ^ 2)) = InformationTheory.klDiv ρ μ) :
                                    InformationTheory.klDiv ((pushforward g.toFun ρ).withDensity fun (x : X) => ENNReal.ofReal (h x ^ 2)) ((pushforward g.toFun μ).withDensity fun (x : X) => ENNReal.ofReal (h x ^ 2)) = InformationTheory.klDiv ρ μ

                                    Theorem: Entropy transformation under pullback/pushforward

                                    theorem Frourio.dm_transform_formula {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (g : DirichletAutomorphism) (s : ScaleTransform m) (h_inv : dm_G_invariant H Γ) (hscale : ∀ (μ ρ₀ ρ₁ : MeasureTheory.Measure X), dm H (s.apply cfg) Γ (κ / s.σ) μ ρ₀ ρ₁ = s.σ * dm H cfg Γ κ μ ρ₀ ρ₁) (ρ₀ ρ₁ : MeasureTheory.Measure X) :
                                    dm H (s.apply cfg) Γ (κ / s.σ) (pushforward g.toFun μ) (pushforward g.toFun ρ₀) (pushforward g.toFun ρ₁) = s.σ * dm H cfg Γ κ μ ρ₀ ρ₁

                                    Distance formula under pullback/pushforward

                                    Pullback preserves L² integrability

                                    theorem Frourio.meta_variational_G_invariant {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) [MeasureTheory.IsFiniteMeasure μ] (flags : MetaEVIFlags H cfg Γ κ μ) (g : GAction X m) :
                                    ∃ (transformed_flags : MetaEVIFlags H (g.actOnConfig cfg) Γ κ (g.actOnMeasure μ)), transformed_flags.lam_eff = transformed_flags.lam_base - 2 * transformed_flags.doob.ε - spectral_penalty_term (g.actOnConfig cfg) transformed_flags.fgstar_const.C_energy κ

                                    Main theorem: Complete G-invariance of the meta-variational principle

                                    theorem Frourio.FGStar_G_invariant {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (cfg : MultiScaleConfig m) (lam : ) (doob : DoobDegradation) (κ C : ) (g : GAction X m) :

                                    Main G-invariance for FG★ (effective rate). If the Doob degradation amount ε is fixed (encoded in doob : DoobDegradation), then the effective rate λ_eff = (λ - 2ε) - κ C ‖ψ_m‖_∞^2 is invariant under the G-action components (Dirichlet automorphism, Doob, scale, reparam).

                                    def Frourio.GAction.comp {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (g₁ g₂ : GAction X m) :

                                    Composition of G-actions forms a group structure

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      def Frourio.GAction.id {X : Type u_1} [MeasurableSpace X] (m : ℕ+) :

                                      Identity element of G-action

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        Identity action on measures: doing nothing leaves the measure unchanged.

                                        theorem Frourio.GAction.id_actOnConfig {X : Type u_1} [MeasurableSpace X] (m : ℕ+) (cfg : MultiScaleConfig m) :
                                        (id m).actOnConfig cfg = cfg

                                        Identity action on configurations: parameters remain unchanged.

                                        Invariance of entropy under Dirichlet automorphism. The key observation is that when Doob h ≡ 1, the measure transformation reduces to a simple pushforward.

                                        theorem Frourio.dm_scale_transform {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (s : ScaleTransform m) (ρ₀ ρ₁ : MeasureTheory.Measure X) (hscale : dm H (s.apply cfg) Γ (κ / s.σ) μ ρ₀ ρ₁ = s.σ * dm H cfg Γ κ μ ρ₀ ρ₁) :
                                        dm H (s.apply cfg) Γ (κ / s.σ) μ ρ₀ ρ₁ = s.σ * dm H cfg Γ κ μ ρ₀ ρ₁

                                        Scale transformation law for dm. Under scale transformation τ ↦ στ, the modified distance transforms as: dm(στ) = σ · dm(τ) when κ is scaled appropriately.

                                        theorem Frourio.dm_G_scale_invariant {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (g : GAction X m) (ρ₀ ρ₁ : MeasureTheory.Measure X) :
                                        dm_G_invariant H Γdm H (g.actOnConfig cfg) Γ κ (g.actOnMeasure μ) (g.actOnMeasure ρ₀) (g.actOnMeasure ρ₁) = dm H cfg Γ κ μ ρ₀ ρ₁

                                        Invariance of dm under full G-action with scale component. When all components (measures and parameters) are transformed consistently, the distance is preserved.

                                        theorem Frourio.meta_principle_G_invariant {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (Ent : MeasureTheory.Measure X) (lam : ) (doob : DoobDegradation) (g : GAction X m) :
                                        entropy_G_invariant Entdm_G_invariant H ΓmultiScaleDiff_G_invariant H∃ (lam' : ) (doob' : DoobDegradation), lam' - 2 * doob'.ε - κ * spectralSymbolSupNorm (g.actOnConfig cfg) ^ 2 = lam - 2 * doob.ε - κ * spectralSymbolSupNorm cfg ^ 2

                                        Main theorem: Full G-invariance of meta-variational principle

                                        theorem Frourio.lam_eff_G_invariant {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (cfg : MultiScaleConfig m) (κ C lam : ) (doob : DoobDegradation) (g : GAction X m) :
                                        ∃ (doob' : DoobDegradation), doob'.degraded_lambda lam - κ * C * spectralSymbolSupNorm (g.actOnConfig cfg) ^ 2 = doob.degraded_lambda lam - κ * C * spectralSymbolSupNorm cfg ^ 2

                                        Corollary: The effective rate λ_eff is G-invariant up to Doob composition