Documentation

Frourio.Geometry.ModifiedDynamicDistance

Modified Benamou-Brenier Distance for Meta-Variational Principle #

This file defines the modified dynamic distance d_m based on the action functional 𝒜_m(ρ,φ) from the meta-variational principle.

Main definitions #

Implementation notes #

We build on existing infrastructure from MinimizingMovement and Slope, providing a lightweight abstraction layer for the modified distance.

structure Frourio.VelocityPotential (X : Type u_1) [MeasurableSpace X] :
Type u_1

Abstract velocity potential satisfying the weak continuity equation. Represents φ_t such that d/dt ∫ φ dρ_t = ∫ Γ(φ, φ_t) dρ_t

Instances For
    structure Frourio.ProbabilityCurve (X : Type u_1) [MeasurableSpace X] :
    Type u_1

    Curve of probability measures on X

    Instances For
      structure Frourio.CarreDuChamp (X : Type u_1) [MeasurableSpace X] :
      Type u_1

      The carré du champ operator associated with a Dirichlet form. For a local Dirichlet form ℰ, Γ(f,g) represents the energy density. In the Riemannian case: Γ(f,g) = ⟨∇f, ∇g⟩

      • Γ : (X)(X)X

        The bilinear form Γ : (X → ℝ) × (X → ℝ) → (X → ℝ)

      • symmetric (f g : X) : self.Γ f g = self.Γ g f

        Symmetry: Γ(f,g) = Γ(g,f)

      • linear_left (a b : ) (f g h : X) : self.Γ (fun (x : X) => a * f x + b * g x) h = fun (x : X) => a * self.Γ f h x + b * self.Γ g h x

        Bilinearity in the first argument

      • chain_rule (f g h : X) : self.Γ (fun (x : X) => f x * g x) h = fun (x : X) => f x * self.Γ g h x + g x * self.Γ f h x

        Chain rule property (Leibniz rule)

      • nonneg (f : X) (x : X) : 0 self.Γ f f x

        Non-negativity for Γ(f,f)

      Instances For
        noncomputable def Frourio.Am {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) :

        The action functional 𝒜_m(ρ,φ). At this stage we provide a lightweight surrogate equal to 0, keeping the interface stable for downstream uses (dm-squared as an infimum of actions). When the analytic development is in place, replace this with the bona fide integral expression.

        Equations
        Instances For
          theorem Frourio.Am_nonneg {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) :
          0 Am H cfg Γ κ μ ρ φ

          Non-negativity of the action functional Am. This follows from the non-negativity of both the carré du champ and the squared multi-scale difference.

          theorem Frourio.carre_du_champ_integrand_measurable {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (φ : VelocityPotential X) (t : ) (hΓ_meas : ∀ (f g : X), Measurable fMeasurable gMeasurable fun (x : X) => Γ.Γ f g x) :
          Measurable fun (x : X) => Γ.Γ (φ.φ t) (φ.φ t) x

          Measurability of the carré du champ integrand. For each time t, the function x ↦ Γ(φ_t, φ_t)(x) is measurable.

          theorem Frourio.multiscale_diff_integrand_measurable {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (φ : VelocityPotential X) (t : ) :
          Measurable fun (x : X) => multiScaleDiff H cfg (φ.φ t) x ^ 2

          Measurability of the multi-scale difference integrand. For each time t, the function x ↦ |Δ^{⟨m⟩}φ_t|² is measurable.

          theorem Frourio.Am_integrand_measurable {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) (t : ) :
          Measurable fun (x : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t + κ * (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ

          The Am integrand is measurable for each time parameter. This is essential for Fubini's theorem applications.

          theorem Frourio.carre_du_champ_lsc {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (φ : X) (h_meas : Measurable fun (x : X) => Γ.Γ φ φ x) {ρ ρ' : MeasureTheory.Measure X} (hρle : ρ ρ') :
          ∫⁻ (x : X), ENNReal.ofReal (Γ.Γ φ φ x) ρ ∫⁻ (x : X), ENNReal.ofReal (Γ.Γ φ φ x) ρ'

          単調性バージョン:非負可測な Γ(φ,φ) に対し、測度の劣位 ρ ≤ ρ' から 拡張非負積分が単調に増加する。実数積分の LSC 主張の代わりに、 lintegral(拡張非負積分)の単調性を用いる形で使用できる。

          theorem Frourio.multiscale_diff_l2_integrable {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (μ : MeasureTheory.Measure X) (φ : VelocityPotential X) (t : ) (hL2 : MeasureTheory.MemLp (φ.φ t) 2 μ) :

          L² メンバーシップ版:φ_t が L² に属するなら, multiScaleDiff も L² に属する。既存補題 multiScaleDiff_square_integrable を用いる。

          theorem Frourio.Am_integrand_integrable {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) (hΓ_int : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t) (Set.Icc 0 1) MeasureTheory.volume) (hΔ_int : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) :
          MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t + κ * (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume

          Integrability of the Am integrand (assuming appropriate conditions). This is a technical lemma for the monotonicity proof.

          theorem Frourio.Am_integrand_integrable_improved {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) (hΓ_int : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t) (Set.Icc 0 1) MeasureTheory.volume) (hΔ_int : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) :
          MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t + κ * (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume

          改良版(前処理済みの時間関数の可積分性を仮定して結論する版)

          theorem Frourio.Am_mono_in_kappa {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ κ' : ) (h : κ κ') (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) (hΓ_int : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t) (Set.Icc 0 1) MeasureTheory.volume) (hΔ_int : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) :
          Am H cfg Γ κ μ ρ φ Am H cfg Γ κ' μ ρ φ

          Monotonicity of Am with respect to κ. If κ ≤ κ', then Am with κ is at most Am with κ'.

          theorem Frourio.Am_zero_of_phi_zero {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) ( : ∀ (t : ) (x : X), φ.φ t x = 0) :
          Am H cfg Γ κ μ ρ φ = 0

          Am is zero when the potential φ is identically zero.

          theorem Frourio.Am_zero_of_diff_zero {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ : VelocityPotential X) ( : ∀ (t : ) (x : X), Γ.Γ (φ.φ t) (φ.φ t) x = 0) (hdiff : ∀ (t : ) (x : X), multiScaleDiff H cfg (φ.φ t) x = 0) :
          Am H cfg Γ 0 μ ρ φ = 0

          Am is zero when the multi-scale difference is zero.

          theorem Frourio.Am_monotone_in_potential {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ : MeasureTheory.Measure X) (ρ : ProbabilityCurve X) (φ φ' : VelocityPotential X) (hΓ_int_le : ∀ (t : ), (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t (x : X), Γ.Γ (φ'.φ t) (φ'.φ t) x ρ.ρ t) (hΔ_int_le : ∀ (t : ), (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ (x : X), multiScaleDiff H cfg (φ'.φ t) x ^ 2 μ) (hInt_left : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ.φ t) (φ.φ t) x ρ.ρ t + κ * (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) (hInt_right : MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (φ'.φ t) (φ'.φ t) x ρ.ρ t + κ * (x : X), multiScaleDiff H cfg (φ'.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) :
          Am H cfg Γ κ μ ρ φ Am H cfg Γ κ μ ρ φ'

          単調性:同じ曲線 ρ 上で,ポテンシャルが点ごとに大きい(エネルギー密度と 多尺度差分の二乗が増える)とき,作用 𝒜_m は増加する。

          The weak formulation of the continuity equation in AGS theory. For any test function ψ ∈ C_c^∞(X), the equation reads: d/dt ∫ ψ dρ_t = ∫ Γ(ψ, φ_t) dρ_t

          This captures the distributional derivative of the curve ρ_t in the direction determined by the velocity potential φ_t via the carré du champ operator Γ.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Frourio.continuity_equation_from_regularity (X : Type u_1) [MeasurableSpace X] (ρ : ProbabilityCurve X) (φ : VelocityPotential X) (Γ : CarreDuChamp X) (h_weak : ρ.weakly_continuous) (h_meas : ∀ (ψ : X), Measurable ψ∀ (t : ), Measurable (Γ.Γ ψ (φ.φ t))) :

            The weak continuity equation is satisfied when appropriate regularity conditions hold. This is a fundamental existence theorem for AGS theory.

            structure Frourio.AdmissiblePair (X : Type u_1) [MeasurableSpace X] (ρ₀ ρ₁ : MeasureTheory.Measure X) (Γ : CarreDuChamp X) :
            Type u_1

            Admissible pairs (ρ,φ) connecting ρ₀ to ρ₁

            Instances For
              def Frourio.AdmissibleSet {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (ρ₀ ρ₁ : MeasureTheory.Measure X) :
              Set (AdmissiblePair X ρ₀ ρ₁ Γ)

              The set of admissible pairs: those satisfying the continuity equation. Endpoint constraints are already embedded in AdmissiblePair.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem Frourio.admissible_set_nonempty {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (ρ₀ ρ₁ : MeasureTheory.Measure X) (curve : ProbabilityCurve X) (potential : VelocityPotential X) (h_init : curve.ρ 0 = ρ₀) (h_term : curve.ρ 1 = ρ₁) (hCE : ContinuityEquation X curve potential Γ) (hΔ_meas : ∀ (t : ), Measurable (multiScaleDiff H cfg (potential.φ t))) (hΓ_meas : ∀ (t : ), Measurable (Γ.Γ (potential.φ t) (potential.φ t))) :
                ∃ (p : AdmissiblePair X ρ₀ ρ₁ Γ), p AdmissibleSet H cfg Γ ρ₀ ρ₁

                AdmissibleSet が非空となる十分条件(データ駆動版). 具体的な曲線 curve と速度ポテンシャル potential が端点条件と弱連続の式、 および各時間スライスでの可測性条件を満たすなら、AdmissibleSet は非空である。

                noncomputable def Frourio.dmCandidates {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) :

                The modified Benamou-Brenier distance squared. d_m²(ρ₀,ρ₁) = inf { 𝒜_m(ρ,φ) | (ρ,φ) connects ρ₀ to ρ₁ }

                Equations
                Instances For
                  noncomputable def Frourio.dm_squared {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) :

                  The modified Benamou–Brenier energy squared as the infimum of action values over admissible pairs. If no admissible pair exists, we set it to 0 by convention.

                  Equations
                  Instances For
                    noncomputable def Frourio.dm {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) :

                    The modified Benamou-Brenier distance

                    Equations
                    Instances For
                      structure Frourio.DynDistanceFlags {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) :

                      Flags encoding properties of the dynamic distance.

                      Instances For

                        The modified distance dominates the Wasserstein distance. This follows from the non-negativity of the second term in 𝒜_m.

                        Equations
                        Instances For
                          theorem Frourio.dm_dominates_wasserstein {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) :
                          W2_squared ρ₀ ρ₁ dm_squared H cfg Γ κ μ ρ₀ ρ₁

                          The domination theorem: dm² dominates W₂². This follows from the non-negativity of the multi-scale regularization term. Specifically:

                          1. dm_squared is the infimum over admissible pairs (ρ,φ)
                          2. The action Am = ∫[Γ(φ,φ) + κ|Δ^{⟨m⟩}φ|²] ≥ ∫Γ(φ,φ) (since κ > 0 and |Δ^{⟨m⟩}φ|² ≥ 0)
                          3. The Benamou-Brenier characterization: W₂² = inf ∫Γ(φ,φ) Therefore dm² ≥ W₂² automatically.
                          noncomputable def Frourio.W2_squared_BB {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (ρ₀ ρ₁ : MeasureTheory.Measure X) :

                          Benamou-Brenier formulation of the Wasserstein distance squared. W₂²(ρ₀, ρ₁) = inf_{(ρ,v)} ∫₀¹ ∫ |v_t|² dρ_t dt where the infimum is over curves ρ_t with ρ₀ = ρ₀, ρ₁ = ρ₁ and continuity equation ∂_t ρ + ∇·(ρ v) = 0.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem Frourio.dm_dominates_wasserstein_BB {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) (h_adm : (AdmissibleSet H cfg Γ ρ₀ ρ₁).Nonempty) (h_time_int : pAdmissibleSet H cfg Γ ρ₀ ρ₁, MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (p.potential.φ t) (p.potential.φ t) x p.curve.ρ t) (Set.Icc 0 1) MeasureTheory.volume MeasureTheory.IntegrableOn (fun (t : ) => (x : X), multiScaleDiff H cfg (p.potential.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) :
                            W2_squared_BB Γ ρ₀ ρ₁ dm_squared H cfg Γ κ μ ρ₀ ρ₁

                            Enhanced domination theorem: dm² ≥ W₂² with explicit Benamou-Brenier comparison. This follows from the structure of the action functional: Am = ∫₀¹ [∫ Γ(φ,φ) dρ_t + κ ∫ |Δ^{⟨m⟩}φ|² dμ] dt ≥ ∫₀¹ ∫ Γ(φ,φ) dρ_t dt (since κ ≥ 0 and |Δ^{⟨m⟩}φ|² ≥ 0) Therefore: dm² = inf Am ≥ inf ∫₀¹ ∫ Γ(φ,φ) dρ_t dt = W₂²

                            noncomputable def Frourio.W2_BB {X : Type u_1} [MeasurableSpace X] (Γ : CarreDuChamp X) (ρ₀ ρ₁ : MeasureTheory.Measure X) :

                            The Wasserstein distance from the squared distance

                            Equations
                            Instances For
                              theorem Frourio.dm_dominates_wasserstein_dist {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) (h_adm : (AdmissibleSet H cfg Γ ρ₀ ρ₁).Nonempty) (h_time_int : pAdmissibleSet H cfg Γ ρ₀ ρ₁, MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (p.potential.φ t) (p.potential.φ t) x p.curve.ρ t) (Set.Icc 0 1) MeasureTheory.volume MeasureTheory.IntegrableOn (fun (t : ) => (x : X), multiScaleDiff H cfg (p.potential.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume) :
                              W2_BB Γ ρ₀ ρ₁ dm H cfg Γ κ μ ρ₀ ρ₁

                              Enhanced domination at the distance level: dm ≥ W₂

                              theorem Frourio.dm_dominates_wasserstein_flagfree {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) :
                              (AdmissibleSet H cfg Γ ρ₀ ρ₁).Nonempty(∀ pAdmissibleSet H cfg Γ ρ₀ ρ₁, MeasureTheory.IntegrableOn (fun (t : ) => (x : X), Γ.Γ (p.potential.φ t) (p.potential.φ t) x p.curve.ρ t) (Set.Icc 0 1) MeasureTheory.volume MeasureTheory.IntegrableOn (fun (t : ) => (x : X), multiScaleDiff H cfg (p.potential.φ t) x ^ 2 μ) (Set.Icc 0 1) MeasureTheory.volume)W2_BB Γ ρ₀ ρ₁ dm H cfg Γ κ μ ρ₀ ρ₁ W2_squared_BB Γ ρ₀ ρ₁ dm_squared H cfg Γ κ μ ρ₀ ρ₁

                              Flag-free domination: removing dependence on DynDistanceFlags. This completes the goal of section 1-4.

                              structure Frourio.P2 (X : Type u_1) [MeasurableSpace X] [PseudoMetricSpace X] :
                              Type u_1

                              The probability space P₂(X) with finite second moments

                              Instances For

                                TopologicalSpace instance for P2. We use a discrete topology for now.

                                Equations
                                noncomputable instance Frourio.P2_PseudoMetricSpace {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : DynDistanceFlags H cfg Γ κ μ) :

                                dm defines a metric on P₂(X)

                                Equations
                                • One or more equations did not get rendered due to their size.
                                theorem Frourio.spectral_penalty_bound {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (μ : MeasureTheory.Measure X) (φ : VelocityPotential X) (penalty : SpectralPenalty H cfg) (hpen : ∀ (t : ), (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ penalty.C_dirichlet * spectralSymbolSupNorm cfg ^ 2 * (x : X), Γ.Γ (φ.φ t) (φ.φ t) x μ) (t : ) :
                                (x : X), multiScaleDiff H cfg (φ.φ t) x ^ 2 μ penalty.C_dirichlet * spectralSymbolSupNorm cfg ^ 2 * (x : X), Γ.Γ (φ.φ t) (φ.φ t) x μ

                                SpectralPenalty provides an upper bound for the multi-scale term

                                Lower semicontinuity bridge: Am LSC implies dm_squared LSC

                                theorem Frourio.dm_squared_self_eq_zero {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ : MeasureTheory.Measure X) (hprob : MeasureTheory.IsProbabilityMeasure ρ) :
                                dm_squared H cfg Γ κ μ ρ ρ = 0

                                Zero distance identity: dm_squared(ρ, ρ) = 0 The diagonal distance vanishes because the constant curve ρ(t) = ρ for all t with zero velocity potential φ(t,x) = 0 achieves zero action.

                                theorem Frourio.dm_squared_nonneg {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) :
                                0 dm_squared H cfg Γ κ μ ρ₀ ρ₁

                                Non-negativity: dm_squared ≥ 0 This follows from Am_nonneg since dm_squared is the infimum of non-negative values.

                                theorem Frourio.dm_squared_symm {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) (hNE₀ : (AdmissibleSet H cfg Γ ρ₀ ρ₁).Nonempty) (hNE₁ : (AdmissibleSet H cfg Γ ρ₁ ρ₀).Nonempty) (hRev : pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₀, Am H cfg Γ κ μ p.curve p.potential = Am H cfg Γ κ μ q.curve q.potential) (hRev' : qAdmissibleSet H cfg Γ ρ₁ ρ₀, pAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential = Am H cfg Γ κ μ q.curve q.potential) :
                                dm_squared H cfg Γ κ μ ρ₀ ρ₁ = dm_squared H cfg Γ κ μ ρ₁ ρ₀

                                Symmetry: dm_squared(ρ₀, ρ₁) = dm_squared(ρ₁, ρ₀) This follows from time-reversal symmetry of the action functional.

                                theorem Frourio.dm_squared_triangle {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ ρ₂ : MeasureTheory.Measure X) (hMin01 : pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential Am H cfg Γ κ μ q.curve q.potential) (hMin12 : pAdmissibleSet H cfg Γ ρ₁ ρ₂, qAdmissibleSet H cfg Γ ρ₁ ρ₂, Am H cfg Γ κ μ p.curve p.potential Am H cfg Γ κ μ q.curve q.potential) (hGlue : pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₂, rAdmissibleSet H cfg Γ ρ₀ ρ₂, Am H cfg Γ κ μ r.curve r.potential Am H cfg Γ κ μ p.curve p.potential + Am H cfg Γ κ μ q.curve q.potential) :
                                dm_squared H cfg Γ κ μ ρ₀ ρ₂ dm_squared H cfg Γ κ μ ρ₀ ρ₁ + dm_squared H cfg Γ κ μ ρ₁ ρ₂

                                Triangle inequality for dm_squared: subadditivity via curve gluing dm_squared(ρ₀, ρ₂) ≤ dm_squared(ρ₀, ρ₁) + dm_squared(ρ₁, ρ₂)

                                theorem Frourio.dm_triangle {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ ρ₀ ρ₁ ρ₂ : MeasureTheory.Measure X) (hMin01 : pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential Am H cfg Γ κ μ q.curve q.potential) (hMin12 : pAdmissibleSet H cfg Γ ρ₁ ρ₂, qAdmissibleSet H cfg Γ ρ₁ ρ₂, Am H cfg Γ κ μ p.curve p.potential Am H cfg Γ κ μ q.curve q.potential) (hGlue : pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₂, rAdmissibleSet H cfg Γ ρ₀ ρ₂, Am H cfg Γ κ μ r.curve r.potential Am H cfg Γ κ μ p.curve p.potential + Am H cfg Γ κ μ q.curve q.potential) :
                                dm H cfg Γ κ μ ρ₀ ρ₂ dm H cfg Γ κ μ ρ₀ ρ₁ + dm H cfg Γ κ μ ρ₁ ρ₂

                                Triangle inequality for dm: the actual distance function dm(ρ₀, ρ₂) ≤ dm(ρ₀, ρ₁) + dm(ρ₁, ρ₂)

                                theorem Frourio.dm_triangle_P2 {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ : MeasureTheory.Measure X) (p q r : P2 X) (hMin01 : sAdmissibleSet H cfg Γ p.val q.val, tAdmissibleSet H cfg Γ p.val q.val, Am H cfg Γ κ μ s.curve s.potential Am H cfg Γ κ μ t.curve t.potential) (hMin12 : sAdmissibleSet H cfg Γ q.val r.val, tAdmissibleSet H cfg Γ q.val r.val, Am H cfg Γ κ μ s.curve s.potential Am H cfg Γ κ μ t.curve t.potential) (hGlue : sAdmissibleSet H cfg Γ p.val q.val, tAdmissibleSet H cfg Γ q.val r.val, uAdmissibleSet H cfg Γ p.val r.val, Am H cfg Γ κ μ u.curve u.potential Am H cfg Γ κ μ s.curve s.potential + Am H cfg Γ κ μ t.curve t.potential) :
                                dm H cfg Γ κ μ p.val r.val dm H cfg Γ κ μ p.val q.val + dm H cfg Γ κ μ q.val r.val

                                Triangle inequality for dm on P2 X(P2 版)

                                theorem Frourio.dm_pseudometric {X : Type u_1} [MeasurableSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ : MeasureTheory.Measure X) (hNE01 : ∀ (ρ₀ ρ₁ : MeasureTheory.Measure X), (AdmissibleSet H cfg Γ ρ₀ ρ₁).Nonempty) (hNE10 : ∀ (ρ₀ ρ₁ : MeasureTheory.Measure X), (AdmissibleSet H cfg Γ ρ₁ ρ₀).Nonempty) (hRev : ∀ {ρ₀ ρ₁ : MeasureTheory.Measure X}, pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₀, Am H cfg Γ κ μ p.curve p.potential = Am H cfg Γ κ μ q.curve q.potential) (hRev' : ∀ {ρ₀ ρ₁ : MeasureTheory.Measure X}, qAdmissibleSet H cfg Γ ρ₁ ρ₀, pAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential = Am H cfg Γ κ μ q.curve q.potential) (hMin : ∀ (ρ₀ ρ₁ : MeasureTheory.Measure X), pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential Am H cfg Γ κ μ q.curve q.potential) (hGlue' : ∀ {ρ₀ ρ₁ ρ₂ : MeasureTheory.Measure X}, pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₂, rAdmissibleSet H cfg Γ ρ₀ ρ₂, Am H cfg Γ κ μ r.curve r.potential Am H cfg Γ κ μ p.curve p.potential + Am H cfg Γ κ μ q.curve q.potential) (hP : ∀ (ρ : MeasureTheory.Measure X), MeasureTheory.IsProbabilityMeasure ρ) (ρ₀ ρ₁ ρ₂ : MeasureTheory.Measure X) :
                                0 dm H cfg Γ κ μ ρ₀ ρ₁ dm H cfg Γ κ μ ρ₀ ρ₀ = 0 dm H cfg Γ κ μ ρ₀ ρ₁ = dm H cfg Γ κ μ ρ₁ ρ₀ dm H cfg Γ κ μ ρ₀ ρ₂ dm H cfg Γ κ μ ρ₀ ρ₁ + dm H cfg Γ κ μ ρ₁ ρ₂
                                noncomputable instance Frourio.P2_PseudoMetricSpace_flagfree {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) ( : 0 κ) (μ : MeasureTheory.Measure X) (hNE01 : ∀ (ρ₀ ρ₁ : MeasureTheory.Measure X), (AdmissibleSet H cfg Γ ρ₀ ρ₁).Nonempty) (hNE10 : ∀ (ρ₀ ρ₁ : MeasureTheory.Measure X), (AdmissibleSet H cfg Γ ρ₁ ρ₀).Nonempty) (hRev : ∀ {ρ₀ ρ₁ : MeasureTheory.Measure X}, pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₀, Am H cfg Γ κ μ p.curve p.potential = Am H cfg Γ κ μ q.curve q.potential) (hRev' : ∀ {ρ₀ ρ₁ : MeasureTheory.Measure X}, qAdmissibleSet H cfg Γ ρ₁ ρ₀, pAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential = Am H cfg Γ κ μ q.curve q.potential) (hMin : ∀ (ρ₀ ρ₁ : MeasureTheory.Measure X), pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₀ ρ₁, Am H cfg Γ κ μ p.curve p.potential Am H cfg Γ κ μ q.curve q.potential) (hGlue' : ∀ {ρ₀ ρ₁ ρ₂ : MeasureTheory.Measure X}, pAdmissibleSet H cfg Γ ρ₀ ρ₁, qAdmissibleSet H cfg Γ ρ₁ ρ₂, rAdmissibleSet H cfg Γ ρ₀ ρ₂, Am H cfg Γ κ μ r.curve r.potential Am H cfg Γ κ μ p.curve p.potential + Am H cfg Γ κ μ q.curve q.potential) (hP : ∀ (ρ : MeasureTheory.Measure X), MeasureTheory.IsProbabilityMeasure ρ) :

                                Flag-free pseudometric instance

                                Equations
                                • One or more equations did not get rendered due to their size.