Main Inequality FG★ for Meta-Variational Principle #
This file implements Phase E of the meta-variational principle, establishing the main inequality FG★: λ_eff ≥ λ - 2ε(h) - κC(ℰ)‖ψ_m‖_∞²
Main definitions #
MetaEVIFlags
: Complete flag structure for EVI contractionevi_contraction_rate_from_meta_flags
: Extract effective rate from flagsFGStar_main_inequality
: The main theorem
Implementation notes #
The effective parameter λ_eff represents the contraction rate in the EVI inequality after accounting for Doob transform degradation and multi-scale regularization penalty.
Domain of the Carré du Champ operator (placeholder)
Equations
- Frourio.domain_of_carre_du_champ Γ μ = {φ : X → ℝ | MeasureTheory.Integrable (fun (x : X) => Γ.Γ φ φ x) μ}
Instances For
Extended FG★ constant with spectral bound
- spectral_bound (φ : X → ℝ) : MeasureTheory.MemLp φ 2 μ → φ ∈ domain_of_carre_du_champ Γ μ → ∫ (x : X), multiScaleDiff H cfg φ x ^ 2 ∂μ ≤ self.C_energy * spectralSymbolSupNorm cfg ^ 2 * ∫ (x : X), Γ.Γ φ φ x ∂μ
The constant satisfies the spectral bound
Instances For
Cauchy-Schwarz equality condition for the spectral estimate. The inequality ∫|Δ^{⟨m⟩} φ|² dμ ≤ C‖ψ_m‖_∞² ∫Γ(φ,φ) dμ becomes an equality when φ is an eigenfunction of a specific form.
- eigenfunction : X → ℝ
The eigenfunction that achieves equality
- eigenvalue : ℝ
The eigenvalue corresponding to the eigenfunction
- nonzero_eigenfunction : ∃ (x : X), self.eigenfunction x ≠ 0
- eigen_equation (x : X) : multiScaleDiff H cfg self.eigenfunction x = self.eigenvalue * self.eigenfunction x
The eigenfunction satisfies the eigenvalue equation with multi-scale operator
- equality_holds (x : X) : |multiScaleDiff H cfg self.eigenfunction x| = |self.eigenvalue| * |self.eigenfunction x|
A concrete equality induced by the eigenfunction relation: pointwise, |Δ^{⟨m⟩} φ| = |λ|·|φ|. This encodes the sharpness condition in a measure‑free way that follows immediately from
eigen_equation
.
Instances For
Extended meta-EVI flags with dynamic distance
- lam_eff_eq : self.lam_eff = self.lam_base - 2 * self.doob.ε - spectral_penalty_term cfg self.fgstar_const.C_energy κ
- dyn_flags : DynDistanceFlags H cfg Γ κ μ
Dynamic distance flags
Positivity of regularization parameter
Instances For
Extract the effective contraction rate from meta-variational flags. This gives the rate λ_eff = λ - 2ε(h) - κC(ℰ)‖ψ_m‖_∞²
Equations
- Frourio.evi_contraction_rate_from_meta_flags H cfg Γ κ μ flags = flags.lam_eff
Instances For
The main FG★ inequality: lower bound on effective contraction rate. This theorem states that the effective parameter λ_eff obtained from the meta-variational principle satisfies the fundamental lower bound.
Corollary: The effective rate is decreased by both Doob transform and spectral penalty
Connection to EVI: The effective rate determines gradient flow contraction. This requires additional structure for the EVI inequality to be well-defined.
- geo : MetaGeodesicStructure H cfg Γ κ μ
Geodesic structure on P₂(X) with respect to d_m
- geodesic_convexity (ρ₀ ρ₁ : P2 X) (t : ℝ) : t ∈ Set.Icc 0 1 → (Ent.Ent (self.geo.γ ρ₀ ρ₁ t).val).toReal ≤ (1 - t) * (Ent.Ent ρ₀.val).toReal + t * (Ent.Ent ρ₁.val).toReal - flags.lam_eff * t * (1 - t) * dm H cfg Γ κ μ ρ₀.val ρ₁.val ^ 2 / 2
The entropy is geodesically λ_eff-convex along d_m geodesics
- gradient_flow_exists : Prop
The gradient flow of entropy exists and is well-defined
- evi_holds : Prop
The gradient flow satisfies the EVI inequality with rate lam_eff
Instances For
The main FG★ inequality for the L² norm of the multi-scale operator. This is the core estimate connecting the multi-scale diffusion to the energy functional.
The FG★ inequality with explicit constant tracking for ENNReal values
Main theorem: The effective parameter degradation due to FG★ inequality
Main theorem: FG★ inequality with EVI contraction. Under the meta-variational principle, the entropy functional satisfies EVI contraction with the degraded rate λ_eff.
Optimality: The FG★ inequality is sharp (becomes an equality). This requires all inequalities in the chain to be equalities.
- equality : flags.lam_eff = flags.lam_base - 2 * flags.doob.ε - spectral_penalty_term cfg flags.fgstar_const.C_energy κ
The FG★ inequality is an equality
There exists a Doob function h that achieves the BE degradation bound. In BE theory, this means ε(h) = flags.doob.ε where ε(h) = sup_φ {∫ Γ₂(log h, φ) dμ / ‖φ‖²}
- spectral_achieves_sup : ∃ (S : Set ℝ), S.Nonempty ∧ (∀ lam ∈ S, |spectralSymbol cfg lam| = spectralSymbolSupNorm cfg) ∧ ∃ ε > 0, MeasureTheory.volume (S ∩ Set.Icc 0 ε) > 0
The spectral symbol achieves its sup-norm on a set of positive measure
- config_optimal (cfg' : MultiScaleConfig m) : ∑ i : Fin ↑m, cfg'.α i = 0 → spectralSymbolSupNorm cfg ≤ spectralSymbolSupNorm cfg'
The multi-scale configuration minimizes the spectral sup-norm among all configurations with the same constraints
- cauchy_schwarz_sharp : CauchySchwarzSharp H cfg Γ κ μ flags.fgstar_const
Cauchy–Schwarzの等号が鋭い形で達成され、 固有方程式まで満たすテスト関数が存在する。
Instances For
Scale optimization: Choosing optimal multi-scale parameters
Equations
Instances For
Proof: the scale component of g
preserves the spectral sup-norm, so the
FG★ spectral penalty term is invariant under g
at the level of cfg
.
Under the scale component of the G-action, the spectral sup-norm is preserved.
Theorem: Cauchy-Schwarz equality in the spectral estimate holds if and only if the test function is an eigenfunction.
The spectral inequality ∫|Δ^{⟨m⟩} φ|² dμ ≤ C‖ψ_m‖_∞² ∫Γ(φ,φ) dμ becomes an equality when φ satisfies the eigenvalue equation.
Proof that the Cauchy-Schwarz equality condition is achieved by the optimal configuration in the FG★ sharp case.
Key lemma: In Fourier space, the Cauchy-Schwarz equality corresponds to phase alignment of spectral components.