Documentation

Frourio.Geometry.FGStar

Main Inequality FG★ for Meta-Variational Principle #

This file implements Phase E of the meta-variational principle, establishing the main inequality FG★: λ_eff ≥ λ - 2ε(h) - κC(ℰ)‖ψ_m‖_∞²

Main definitions #

Implementation notes #

The effective parameter λ_eff represents the contraction rate in the EVI inequality after accounting for Doob transform degradation and multi-scale regularization penalty.

Domain of the Carré du Champ operator (placeholder)

Equations
Instances For

    Extended FG★ constant with spectral bound

    Instances For
      structure Frourio.CauchySchwarzSharp {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (fgstar_const : FGStarConstant) :
      Type u_1

      Cauchy-Schwarz equality condition for the spectral estimate. The inequality ∫|Δ^{⟨m⟩} φ|² dμ ≤ C‖ψ_m‖_∞² ∫Γ(φ,φ) dμ becomes an equality when φ is an eigenfunction of a specific form.

      Instances For
        structure Frourio.MetaEVIFlagsExt {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) extends Frourio.MetaEVIFlags H cfg Γ κ μ :

        Extended meta-EVI flags with dynamic distance

        Instances For

          Extract the effective contraction rate from meta-variational flags. This gives the rate λ_eff = λ - 2ε(h) - κC(ℰ)‖ψ_m‖_∞²

          Equations
          Instances For
            theorem Frourio.FGStar_main_inequality {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) :

            The main FG★ inequality: lower bound on effective contraction rate. This theorem states that the effective parameter λ_eff obtained from the meta-variational principle satisfies the fundamental lower bound.

            theorem Frourio.FGStar_degradation {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) (hκ_nonneg : 0 κ) :
            flags.lam_eff flags.lam_base

            Corollary: The effective rate is decreased by both Doob transform and spectral penalty

            structure Frourio.FGStar_EVI_connection {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (Ent : EntropyFunctional X μ) (flags : MetaEVIFlags H cfg Γ κ μ) :
            Type u_1

            Connection to EVI: The effective rate determines gradient flow contraction. This requires additional structure for the EVI inequality to be well-defined.

            • geo : MetaGeodesicStructure H cfg Γ κ μ

              Geodesic structure on P₂(X) with respect to d_m

            • geodesic_convexity (ρ₀ ρ₁ : P2 X) (t : ) : t Set.Icc 0 1(Ent.Ent (self.geo.γ ρ₀ ρ₁ t).val).toReal (1 - t) * (Ent.Ent ρ₀.val).toReal + t * (Ent.Ent ρ₁.val).toReal - flags.lam_eff * t * (1 - t) * dm H cfg Γ κ μ ρ₀.val ρ₁.val ^ 2 / 2

              The entropy is geodesically λ_eff-convex along d_m geodesics

            • gradient_flow_exists : Prop

              The gradient flow of entropy exists and is well-defined

            • evi_holds : Prop

              The gradient flow satisfies the EVI inequality with rate lam_eff

            Instances For
              theorem Frourio.FGStar_L2_inequality {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (μ : MeasureTheory.Measure X) [MeasureTheory.IsFiniteMeasure μ] (C : FGStarConstantExt H cfg Γ μ) (φ : X) (hφ_L2 : MeasureTheory.MemLp φ 2 μ) (hφ_dom : φ domain_of_carre_du_champ Γ μ) :
              (x : X), multiScaleDiff H cfg φ x ^ 2 μ C.C_energy * spectralSymbolSupNorm cfg ^ 2 * (x : X), Γ.Γ φ φ x μ

              The main FG★ inequality for the L² norm of the multi-scale operator. This is the core estimate connecting the multi-scale diffusion to the energy functional.

              theorem Frourio.FGStar_ENNReal_inequality {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (μ : MeasureTheory.Measure X) [MeasureTheory.IsFiniteMeasure μ] (C : FGStarConstantExt H cfg Γ μ) (φ : X) (hφ_L2 : MeasureTheory.MemLp φ 2 μ) (hφ_dom : φ domain_of_carre_du_champ Γ μ) (hΔ_integrable : MeasureTheory.Integrable (fun (x : X) => multiScaleDiff H cfg φ x ^ 2) μ) (hΓ_nonneg_pt : ∀ (x : X), 0 Γ.Γ φ φ x) :

              The FG★ inequality with explicit constant tracking for ENNReal values

              theorem Frourio.FGStar_parameter_degradation {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) [MeasureTheory.IsFiniteMeasure μ] (C : FGStarConstantExt H cfg Γ μ) (lam_base doob_ε : ) (hκ_pos : 0 < κ) (hdoob_nonneg : 0 doob_ε) :
              let lam_eff := lam_base - 2 * doob_ε - spectral_penalty_term cfg C.C_energy κ; lam_eff lam_base

              Main theorem: The effective parameter degradation due to FG★ inequality

              theorem Frourio.FGStar_with_EVI {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (Ent : EntropyFunctional X μ) (flags : MetaEVIFlags H cfg Γ κ μ) (_connection : FGStar_EVI_connection H cfg Γ κ μ Ent flags) :

              Main theorem: FG★ inequality with EVI contraction. Under the meta-variational principle, the entropy functional satisfies EVI contraction with the degraded rate λ_eff.

              structure Frourio.FGStar_sharp {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) :
              Type u_1

              Optimality: The FG★ inequality is sharp (becomes an equality). This requires all inequalities in the chain to be equalities.

              Instances For

                Scale optimization: Choosing optimal multi-scale parameters

                Equations
                Instances For

                  Proof: the scale component of g preserves the spectral sup-norm, so the FG★ spectral penalty term is invariant under g at the level of cfg. Under the scale component of the G-action, the spectral sup-norm is preserved.

                  theorem Frourio.cauchy_schwarz_equality_characterization {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (fgstar_const : FGStarConstant) (φ : X) (h_nonzero : ∃ (x : X), φ x 0) :
                  (∃ (lam : ), ∀ (x : X), multiScaleDiff H cfg φ x = lam * φ x) ∃ (cs : CauchySchwarzSharp H cfg Γ κ μ fgstar_const), cs.eigenfunction = φ

                  Theorem: Cauchy-Schwarz equality in the spectral estimate holds if and only if the test function is an eigenfunction.

                  The spectral inequality ∫|Δ^{⟨m⟩} φ|² dμ ≤ C‖ψ_m‖_∞² ∫Γ(φ,φ) dμ becomes an equality when φ satisfies the eigenvalue equation.

                  theorem Frourio.cauchy_schwarz_sharp_proof {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags : MetaEVIFlags H cfg Γ κ μ) (sharp : FGStar_sharp H cfg Γ κ μ flags) (h_eigenvalue_bound : ∀ (lam : ), (∃ (φ : X), (∃ (x : X), φ x 0) ∀ (x : X), multiScaleDiff H cfg φ x = lam * φ x)|lam| spectralSymbolSupNorm cfg) :
                  ∃ (φ : X) (lam : ), (∀ (x : X), multiScaleDiff H cfg φ x = lam * φ x) (∃ (x : X), φ x 0) |lam| spectralSymbolSupNorm cfg

                  Proof that the Cauchy-Schwarz equality condition is achieved by the optimal configuration in the FG★ sharp case.

                  theorem Frourio.cauchy_schwarz_implies_phase_alignment {m : ℕ+} (cfg : MultiScaleConfig m) (lam : ) (h_lam_in_range : ∃ (ξ : ), spectralSymbol cfg ξ = lam) :
                  ∃ (S : Set ), S.Nonempty ξS, spectralSymbol cfg ξ = lam

                  Key lemma: In Fourier space, the Cauchy-Schwarz equality corresponds to phase alignment of spectral components.