Documentation

Frourio.Geometry.MoscoStability

Mosco Stability and Convergence for Meta-Variational Principle #

This file implements Phase G of the meta-variational principle, establishing stability results under Mosco convergence and continuity of the effective parameters.

Main definitions #

Implementation notes #

Mosco convergence ensures stability of the meta-variational principle under approximation, which is crucial for numerical implementations and limiting procedures.

Surrogate for finite relative entropy: absolute continuity ρ ≪ μ. In full generality, finite relative entropy implies absolute continuity. We adopt this as a lightweight, checkable hypothesis here.

Equations
Instances For

    Second moment finiteness: existence of a center with finite squared distance moment. Uses the extended nonnegative integral of dist(·,x₀)^2.

    Equations
    Instances For

      Mosco convergence of a sequence of heat semigroups to a limit semigroup. This captures both strong and weak convergence properties.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Convergence of multi-scale configurations

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          structure Frourio.SpectralBoundedness {m : ℕ+} (cfg_n : MultiScaleConfig m) :

          Boundedness of spectral symbols along a sequence

          • bound :

            Uniform bound on spectral sup-norms

          • bound_pos : 0 < self.bound

            The bound is finite and positive

          • is_bounded (n : ) : spectralSymbolSupNorm (cfg_n n) self.bound

            All configurations satisfy the bound

          Instances For
            structure Frourio.MoscoFlags {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) :

            Flags for Mosco convergence and stability analysis

            Instances For
              theorem Frourio.dm_converges_from_Mosco_empty {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) (h_empty_lim : AdmissibleSet H cfg Γ ρ₀ ρ₁ = ) (h_empty_all : ∀ (n : ), AdmissibleSet (H_n n) (cfg_n n) Γ ρ₀ ρ₁ = ) :
              Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀ ρ₁) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀ ρ₁))

              Convergence of modified distances under Mosco convergence

              theorem Frourio.dm_converges_from_Mosco_P2 {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] [ProperSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ₀ ρ₁ : P2 X) (h_conv : Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀.val ρ₁.val))) :
              Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀.val ρ₁.val))

              Stronger version with proper space assumption and P2 measures

              theorem Frourio.dm_converges_from_Mosco {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ ρ₀ ρ₁ : MeasureTheory.Measure X) (h_conv : Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀ ρ₁) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀ ρ₁))) :
              Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀ ρ₁) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀ ρ₁))
              theorem Frourio.EVI_flow_converges {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (h_conv_P2 : ∀ (ρ₀ ρ₁ : P2 X), Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀.val ρ₁.val))) (ρ₀ ρ₁ : P2 X) :
              Filter.Tendsto (fun (n : ) => dm (H_n n) (cfg_n n) Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀.val ρ₁.val))

              Convergence of pairwise distances along the Mosco scheme. With the current placeholder definitions (Am ≡ 0), all distances are 0. This lemma provides a concrete, checkable statement that will be upgraded once the action functional is implemented.

              theorem Frourio.lam_eff_liminf {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags_n : (n : ) → MetaEVIFlags (H_n n) (cfg_n n) Γ κ μ) (flags : MetaEVIFlags H cfg Γ κ μ) (h_spec : Filter.Tendsto (fun (n : ) => spectralSymbolSupNorm (cfg_n n)) Filter.atTop (nhds (spectralSymbolSupNorm cfg))) :
              Filter.Tendsto (fun (n : ) => (flags_n n).lam_base) Filter.atTop (nhds flags.lam_base)Filter.Tendsto (fun (n : ) => (flags_n n).doob.ε) Filter.atTop (nhds flags.doob.ε)Filter.Tendsto (fun (n : ) => (flags_n n).fgstar_const.C_energy) Filter.atTop (nhds flags.fgstar_const.C_energy)Filter.liminf (fun (n : ) => (flags_n n).lam_eff) Filter.atTop flags.lam_eff

              Lower semicontinuity of effective lambda under limits

              theorem Frourio.FGStar_stable_under_Mosco {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg_n : MultiScaleConfig m) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (flags_n : (n : ) → MetaEVIFlags (H_n n) (cfg_n n) Γ κ μ) (flags : MetaEVIFlags H cfg Γ κ μ) (h_spec : Filter.Tendsto (fun (n : ) => spectralSymbolSupNorm (cfg_n n)) Filter.atTop (nhds (spectralSymbolSupNorm cfg))) :
              Filter.Tendsto (fun (n : ) => (flags_n n).lam_base) Filter.atTop (nhds flags.lam_base)Filter.Tendsto (fun (n : ) => (flags_n n).doob.ε) Filter.atTop (nhds flags.doob.ε)Filter.Tendsto (fun (n : ) => (flags_n n).fgstar_const.C_energy) Filter.atTop (nhds flags.fgstar_const.C_energy)Filter.liminf (fun (n : ) => (flags_n n).lam_eff) Filter.atTop flags.lam_eff

              Stability of the FG★ inequality under Mosco limits

              theorem Frourio.dm_lipschitz_in_config {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H : HeatSemigroup X) (cfg cfg' : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (ρ₀ ρ₁ : P2 X) (h_lip : L > 0, |dm H cfg' Γ κ μ ρ₀.val ρ₁.val - dm H cfg Γ κ μ ρ₀.val ρ₁.val| L * i : Fin m, (|cfg'.α i - cfg.α i| + |cfg'.τ i - cfg.τ i|)) :
              L > 0, |dm H cfg' Γ κ μ ρ₀.val ρ₁.val - dm H cfg Γ κ μ ρ₀.val ρ₁.val| L * i : Fin m, (|cfg'.α i - cfg.α i| + |cfg'.τ i - cfg.τ i|)

              Quantitative stability estimate for small perturbations

              Continuity of spectral symbol sup-norm along ConfigConvergence. With the current placeholder spectralSymbolSupNorm ≡ 1, this is immediate.

              def Frourio.domain {X : Type u_1} [MeasurableSpace X] (E : (X)) :
              Set (X)

              Domain of a quadratic form: functions where the form is finite. For a Dirichlet form, this typically includes functions in L² with finite energy.

              Equations
              Instances For
                def Frourio.dirichlet_domain {X : Type u_1} [MeasurableSpace X] (E : (X)) (μ : MeasureTheory.Measure X) :
                Set (X)

                Extended domain for Dirichlet forms with measure

                Equations
                Instances For
                  def Frourio.core_domain {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] (E : (X)) (μ : MeasureTheory.Measure X) :
                  Set (X)

                  Core domain: dense subset of smooth functions

                  Equations
                  Instances For
                    noncomputable def Frourio.EVI_flow {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (_H : HeatSemigroup X) (_cfg : MultiScaleConfig m) ( : CarreDuChamp X) ( : ) ( : MeasureTheory.Measure X) (ρ₀ : P2 X) (_t : ) :
                    P2 X

                    Helper: EVI flow placeholder (to be properly defined)

                    Equations
                    Instances For
                      noncomputable def Frourio.JKO_iterate {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (_H : HeatSemigroup X) (_cfg : MultiScaleConfig m) ( : CarreDuChamp X) ( : ) (μ : MeasureTheory.Measure X) (_Ent : EntropyFunctional X μ) ( : ) (ρ₀ : P2 X) (_k : ) :
                      P2 X

                      Helper: JKO iterate placeholder (to be properly defined)

                      Equations
                      Instances For

                        Helper: PLFA-EDE equivalence placeholder

                        Equations
                        Instances For
                          theorem Frourio.heat_semigroup_from_Mosco_forms {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] (E_n : (X)) (E : (X)) (μ : MeasureTheory.Measure X) (_h_mosco_forms : ∀ (φ : X), (∀ (φ_n : X), (∀ (_n : ), True)Filter.Tendsto (fun (n : ) => φ_n n) Filter.atTop (nhds φ)E φ Filter.liminf (fun (n : ) => E_n n (φ_n n)) Filter.atTop) ∃ (φ_n : X), (∀ (_n : ), True) Filter.Tendsto (fun (n : ) => φ_n n) Filter.atTop (nhds φ) Filter.limsup (fun (n : ) => E_n n (φ_n n)) Filter.atTop E φ) (H_n : HeatSemigroup X) (H : HeatSemigroup X) (h_mosco_semigroup : MoscoConvergence H_n H μ) :
                          ∃ (Hn' : HeatSemigroup X) (H' : HeatSemigroup X), MoscoConvergence Hn' H' μ

                          Mosco convergence of Dirichlet forms implies convergence of heat semigroups

                          theorem Frourio.EVI_from_Mosco {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (_mosco : MoscoConvergence H_n H μ) (_h_reg : ∀ (n : ) (t : ) (φ : X), MeasureTheory.Integrable ((H_n n).H t φ) μ) (h_conv_flow : ∀ (ρ₀ : P2 X), t > 0, Filter.Tendsto (fun (n : ) => EVI_flow (H_n n) cfg Γ κ μ ρ₀ t) Filter.atTop (nhds (EVI_flow H cfg Γ κ μ ρ₀ t))) (ρ₀ : P2 X) (t : ) :
                          t > 0∃ (ρ_n : P2 X) (ρ_t : P2 X), (∀ (n : ), ρ_n n = EVI_flow (H_n n) cfg Γ κ μ ρ₀ t) ρ_t = EVI_flow H cfg Γ κ μ ρ₀ t Filter.Tendsto (fun (n : ) => ρ_n n) Filter.atTop (nhds ρ_t)

                          EVI gradient flow convergence from Mosco convergence

                          theorem Frourio.JKO_from_Mosco {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (_mosco : MoscoConvergence H_n H μ) (Ent : EntropyFunctional X μ) (τ : ) (_hτ : 0 < τ) (h_conv_JKO : ∀ (ρ₀ : P2 X) (k : ), Filter.Tendsto (fun (n : ) => JKO_iterate (H_n n) cfg Γ κ μ Ent τ ρ₀ k) Filter.atTop (nhds (JKO_iterate H cfg Γ κ μ Ent τ ρ₀ k))) (ρ₀ : P2 X) (k : ) :
                          ∃ (ρ_n : P2 X) (ρ_k : P2 X), (∀ (n : ), ρ_n n = JKO_iterate (H_n n) cfg Γ κ μ Ent τ ρ₀ k) ρ_k = JKO_iterate H cfg Γ κ μ Ent τ ρ₀ k Filter.Tendsto (fun (n : ) => ρ_n n) Filter.atTop (nhds ρ_k)

                          JKO scheme convergence from Mosco convergence

                          theorem Frourio.Mosco_complete_chain {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (Ent : EntropyFunctional X μ) (mosco : MoscoConvergence H_n H μ) (h_dm_conv : ∀ (ρ₀ ρ₁ : P2 X), Filter.Tendsto (fun (n : ) => dm (H_n n) cfg Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀.val ρ₁.val))) (h_EVI_conv : ∀ (ρ₀ : P2 X), t > 0, ∃ (ρ_t : P2 X), Filter.Tendsto (fun (n : ) => EVI_flow (H_n n) cfg Γ κ μ ρ₀ t) Filter.atTop (nhds ρ_t)) (h_JKO_conv : τ > 0, ∀ (ρ₀ : P2 X) (k : ), ∃ (ρ_k : P2 X), Filter.Tendsto (fun (n : ) => JKO_iterate (H_n n) cfg Γ κ μ Ent τ ρ₀ k) Filter.atTop (nhds ρ_k)) :
                          ∃ (H_n' : HeatSemigroup X) (H' : HeatSemigroup X), MoscoConvergence H_n' H' μ (∀ (ρ₀ ρ₁ : P2 X), Filter.Tendsto (fun (n : ) => dm (H_n' n) cfg Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H' cfg Γ κ μ ρ₀.val ρ₁.val))) (∀ (ρ₀ : P2 X), t > 0, ∃ (ρ_t : P2 X), Filter.Tendsto (fun (n : ) => EVI_flow (H_n' n) cfg Γ κ μ ρ₀ t) Filter.atTop (nhds ρ_t)) τ > 0, ∀ (ρ₀ : P2 X) (k : ), ∃ (ρ_k : P2 X), Filter.Tendsto (fun (n : ) => JKO_iterate (H_n' n) cfg Γ κ μ Ent τ ρ₀ k) Filter.atTop (nhds ρ_k)

                          Main theorem: Complete Mosco stability chain

                          Stability under perturbations in the spectral penalty

                          theorem Frourio.meta_structure_preserved_under_Mosco {X : Type u_1} [MeasurableSpace X] [PseudoMetricSpace X] {m : ℕ+} (H_n : HeatSemigroup X) (H : HeatSemigroup X) (cfg : MultiScaleConfig m) (Γ : CarreDuChamp X) (κ : ) (μ : MeasureTheory.Measure X) (_mosco : MoscoConvergence H_n H μ) (Ent : EntropyFunctional X μ) (_h_dm_conv : ∀ (ρ₀ ρ₁ : P2 X), Filter.Tendsto (fun (n : ) => dm (H_n n) cfg Γ κ μ ρ₀.val ρ₁.val) Filter.atTop (nhds (dm H cfg Γ κ μ ρ₀.val ρ₁.val))) (_h_EVI_conv : ∀ (ρ₀ : P2 X), t > 0, ∃ (ρ_t : P2 X), Filter.Tendsto (fun (n : ) => EVI_flow (H_n n) cfg Γ κ μ ρ₀ t) Filter.atTop (nhds ρ_t)) (_h_JKO_conv : τ > 0, ∀ (ρ₀ : P2 X) (k : ), ∃ (ρ_k : P2 X), Filter.Tendsto (fun (n : ) => JKO_iterate (H_n n) cfg Γ κ μ Ent τ ρ₀ k) Filter.atTop (nhds ρ_k)) :
                          (∀ (n : ), PLFA_EDE_equivalence (H_n n) cfg Γ κ μ Ent)PLFA_EDE_equivalence H cfg Γ κ μ Ent

                          Mosco convergence preserves the meta-variational structure