Documentation

Frourio.Analysis.SchwartzDensity.SchwartzDensityCore2

@[simp]

Helper identity converting the squared extended norm to an ENNReal.ofReal quadratic.

@[simp]

Helper lemma: Lp function restricted to a set is AE strongly measurable

theorem Frourio.lp_truncation_memLp_on_Ioc {σ : } (hσ_upper : σ 1) (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (R : ) (p : ENNReal) (hp : p = 2) :
MeasureTheory.MemLp (fun (x : ) => if 0 < x x R then s x else 0) p (MeasureTheory.volume.restrict (Set.Ioc 0 R))

Truncated Lp functions are in Lp with respect to volume measure on compact intervals NOTE: This requires σ ≤ 1 for the transfer from weighted to unweighted measure. For σ > 1, functions in L²(weightedMeasure σ) may not be in L²(volume). Example: σ = 6/5, s(x) = x^{-3/5} is in L²(weighted) but not L²(volume).

Integrability on support for Lp functions on finite measure sets

theorem Frourio.lp_truncation_integrable {σ : } (hσ_upper : σ 1) (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (R : ) :
MeasureTheory.Integrable (fun (x : ) => if 0 < x x R then s x else 0) MeasureTheory.volume

Truncated Lp functions are integrable with respect to volume measure NOTE: This requires σ ≤ 1 for the proof to work through L² membership. For σ > 1, a different approach would be needed.

theorem Frourio.positive_truncation_memLp {σ : } (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (R : ) :
MeasureTheory.MemLp (fun (x : ) => if 0 < x x R then s x else 0) 2 (weightedMeasure σ)

Positive truncation of Lp function is also in Lp for weighted measure

theorem Frourio.positive_truncation_error_bound {σ : } (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (R ε : ) (hR_truncation : MeasureTheory.eLpNorm (fun (x : ) => if |x| > R then s x else 0) 2 (weightedMeasure σ) < ENNReal.ofReal ε) :
let s_R := fun (x : ) => if 0 < x x R then s x else 0; MeasureTheory.eLpNorm (s - s_R) 2 (weightedMeasure σ) < ENNReal.ofReal ε

Error bound for positive truncation vs tail truncation

theorem Frourio.convolution_integrable_smooth_continuous {f : } {φ : } (hf_integrable : MeasureTheory.Integrable f MeasureTheory.volume) (hφ_smooth : ContDiff (↑) φ) (hφ_compact : HasCompactSupport φ) :
Continuous fun (x : ) => (y : ), f y * (φ (x - y))

Convolution of integrable function with smooth compact support function is continuous

theorem Frourio.convolution_memLp_weighted {σ : } ( : 1 / 2 < σ) {f : } {φ : } (R δ : ) (hR_pos : 0 < R) (hδ_pos : 0 < δ) (hf_support : Function.support f Set.Icc (-R) R) (_hf_memLp : MeasureTheory.MemLp f 2 (weightedMeasure σ)) (hf_vol_integrable : MeasureTheory.LocallyIntegrable f MeasureTheory.volume) (hφ_smooth : ContDiff (↑) φ) (hφ_compact : HasCompactSupport φ) (hφ_support : Function.support φ Set.Icc (-δ) δ) :
MeasureTheory.MemLp (fun (x : ) => (y : ), f y * (φ (x - y))) 2 (weightedMeasure σ)

Volume convolution with smooth compact kernel preserves L² membership in weighted spaces when f has bounded support

theorem Frourio.dist_lp_truncation_bound {σ : } (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (ε : ) ( : 0 < ε) (s_R : ) (hs_R_memLp : MeasureTheory.MemLp s_R 2 (weightedMeasure σ)) (h_truncation_error : MeasureTheory.eLpNorm (s - s_R) 2 (weightedMeasure σ) < ENNReal.ofReal ε) :
dist s (MeasureTheory.MemLp.toLp s_R hs_R_memLp) < ε

Distance bound from truncation error for Lp elements

theorem Frourio.truncation_approximation {σ : } ( : 1 / 2 < σ) (f : ) (hf_memLp : MeasureTheory.MemLp f 2 (weightedMeasure σ)) (ε : ) (hε_pos : 0 < ε) :
∃ (R : ) (_ : 0 < R) (f_R : ) (_ : MeasureTheory.MemLp f_R 2 (weightedMeasure σ)), HasCompactSupport f_R MeasureTheory.eLpNorm (f - f_R) 2 (weightedMeasure σ) < ENNReal.ofReal (ε / 2)

Truncation approximation: Any L² function can be approximated by compactly supported functions

The weighted measure is equivalent to withDensity measure