Documentation

Frourio.Analysis.SchwartzDensity.SchwartzDensityCore1

theorem Frourio.weightedMeasure_finite_on_compact {σ : } ( : 1 / 2 < σ) {K : Set } (hK_compact : IsCompact K) :

The weighted measure is finite on compact sets for σ > 1/2

Convert HasFiniteIntegral and AEStronglyMeasurable to MemLp for p = 2

theorem Frourio.hasFiniteIntegral_of_dominated_on_compactSupport {μ : MeasureTheory.Measure } {g : } {M : } (h_dominated : ∀ᵐ (x : ) μ, g x ^ 2 M ^ 2) (h_finite_on_support : μ (tsupport g) < ) :

For a function with compact support that is dominated a.e. by a constant on its support, if the weighted measure of the support is finite, then the function has finite integral

theorem Frourio.memLp_convolution_simpleFunc_truncation {σ : } ( : 1 / 2 < σ) (f_simple : MeasureTheory.SimpleFunc ) (φ : ) (R δ : ) :
MeasureTheory.MemLp (fun (x : ) => if |x| R then f_simple x else 0) 2 (weightedMeasure σ)∀ (hφ_smooth : ContDiff (↑) φ) (hφ_compact : HasCompactSupport φ) (hφ_support : Function.support φ Set.Icc (-δ) δ) (hR_pos : 0 < R) (hδ_pos : 0 < δ), MeasureTheory.MemLp (fun (x : ) => (y : ), (if |y| R then f_simple y else 0) * (φ (x - y))) 2 (weightedMeasure σ)

Convolution of simple function truncation with smooth compact support function is in L²

eLpNorm equality for Lp element and function difference

theorem Frourio.weightedMeasure_finite_on_interval {σ : } ( : 1 / 2 < σ) (R : ) :

Compact intervals have finite weighted measure for σ > 1/2

theorem Frourio.simpleFunc_unbounded_levelSet_finite_measure_L2 {σ : } (_hσ : 1 / 2 < σ) (f : MeasureTheory.SimpleFunc ) (hf_memL2 : MeasureTheory.MemLp (⇑f) 2 (weightedMeasure σ)) (v : ) (hv_nonzero : v 0) (_hv_range : v Set.range f) (_h_unbounded : ¬R > 0, {x : | f x = v} Set.Icc (-R) R) :

Unbounded level sets of L² simple functions have finite weighted measure for σ > 1/2

theorem Frourio.simpleFunc_levelSet_tail_measure_vanishing {σ : } ( : 1 / 2 < σ) (f : MeasureTheory.SimpleFunc ) (hf_memL2 : MeasureTheory.MemLp (⇑f) 2 (weightedMeasure σ)) (v : ) (hv_nonzero : v 0) (hv_range : v Set.range f) :
Filter.Tendsto (fun (R : ) => (weightedMeasure σ) {x : | f x = v R < |x|}) Filter.atTop (nhds 0)
theorem Frourio.simpleFunc_tail_l2_convergence {σ : } (_hσ : 1 / 2 < σ) (f : MeasureTheory.SimpleFunc ) (_hf_memLp : MeasureTheory.MemLp (⇑f) 2 (weightedMeasure σ)) (_h_pointwise : ∀ (x : ), Filter.Tendsto (fun (R : ) => if |x| R then 0 else f x) Filter.atTop (nhds 0)) (_h_domination : ∀ (R x : ), if |x| R then 0 else f x f x) (h_tail_measure_vanishing : ∀ (v : ), v 0v Set.range fFilter.Tendsto (fun (R : ) => (weightedMeasure σ) {x : | f x = v R < |x|}) Filter.atTop (nhds 0)) :
Filter.Tendsto (fun (R : ) => MeasureTheory.eLpNorm (fun (x : ) => if |x| R then 0 else f x) 2 (weightedMeasure σ)) Filter.atTop (nhds 0)

L² convergence of tail functions for simple functions

For simple functions, the tail truncation converges pointwise to zero

theorem Frourio.simpleFunc_tail_L2_convergence {σ : } ( : 1 / 2 < σ) (f : MeasureTheory.SimpleFunc ) (hf_memLp : MeasureTheory.MemLp (⇑f) 2 (weightedMeasure σ)) :
Filter.Tendsto (fun (R : ) => MeasureTheory.eLpNorm (fun (x : ) => if |x| R then 0 else f x) 2 (weightedMeasure σ)) Filter.atTop (nhds 0)

Tail functions of L² simple functions converge to 0 in L² norm by dominated convergence

theorem Frourio.l2_tail_vanishing {σ : } ( : 1 / 2 < σ) (f : MeasureTheory.SimpleFunc ) (hf_memLp : MeasureTheory.MemLp (⇑f) 2 (weightedMeasure σ)) (ε : ) ( : 0 < ε) :
∃ (R : ), 0 < R MeasureTheory.eLpNorm (fun (x : ) => if |x| R then 0 else f x) 2 (weightedMeasure σ) < ENNReal.ofReal ε

L² functions have vanishing tails: for any ε > 0, there exists R > 0 such that the L² norm of the function outside [-R, R] is less than ε

theorem Frourio.truncation_memLp {σ : } ( : 1 / 2 < σ) (f : MeasureTheory.SimpleFunc ) (_hf_memLp : MeasureTheory.MemLp (⇑f) 2 (weightedMeasure σ)) (R : ) (_hR_pos : 0 < R) :
MeasureTheory.MemLp (fun (x : ) => if |x| R then f x else 0) 2 (weightedMeasure σ)

Truncation of an L² function to a bounded interval remains in L²

theorem Frourio.lp_tail_vanishing {σ : } ( : 1 / 2 < σ) (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (ε : ) ( : 0 < ε) :
∃ (R : ), 0 < R MeasureTheory.eLpNorm (fun (x : ) => if |x| > R then s x else 0) 2 (weightedMeasure σ) < ENNReal.ofReal ε

Tail vanishing property for Lp functions in weighted measure

theorem Frourio.lp_truncation_memLp {σ : } (s : (MeasureTheory.Lp 2 (weightedMeasure σ))) (R : ) :
MeasureTheory.MemLp (fun (x : ) => if |x| R then s x else 0) 2 (weightedMeasure σ)

Truncation of Lp functions preserves Lp membership

theorem Frourio.mollification_delta_small (ε : ) (hε_pos : 0 < ε) (s_R : ) (R : ) (_hR_pos : 0 < R) (σ : ) :
let M := (MeasureTheory.eLpNorm s_R 2 (weightedMeasure σ)).toReal + 1; let δ := min (ε / (8 * M)) (1 / (2 * (R + 1))); δ < ε / (4 * M)

Mollification parameter δ is small when defined as minimum

theorem Frourio.schwartzToHσ_continuous {σ : } ( : 1 / 2 < σ) :
∃ (k₁ : ) (C₀ : ) (C₁ : ), 0 < C₀ 0 < C₁ ∀ (f : SchwartzMap ), schwartzToHσ f C₀ * (SchwartzMap.seminorm 0 0) f + C₁ * (SchwartzMap.seminorm k₁ 0) f

The embedding is continuous with respect to a finite family of Schwartz seminorms for σ > 1/2