Documentation

Frourio.Analysis.HilbertSpaceCore

Weighted L² Hilbert Spaces for Mellin Transform Theory #

This file implements the weighted L² spaces Hσ that are central to the Mellin transform formulation of Frourio mathematics. These spaces are L²((0,∞), x^(2σ-1) dx) with respect to the multiplicative Haar measure.

Main Definitions #

Main Theorems #

noncomputable def Frourio.weightFunction (σ : ) :

The weight function for the weighted L² space

Equations
Instances For

    The weighted measure for Hσ

    Equations
    Instances For
      theorem Frourio.weightedMeasure_apply (σ : ) (s : Set ) (hs : MeasurableSet s) :
      (weightedMeasure σ) s = ∫⁻ (x : ) in s Set.Ioi 0, ENNReal.ofReal (x ^ (2 * σ - 2))
      noncomputable instance Frourio..innerProductSpace (σ : ) :

      Inner product on Hσ inherited from L² structure

      Equations
      theorem Frourio.Hσ_inner_def (σ : ) (f g : ( σ)) :
      inner f g = (x : ), (starRingEnd ) (Hσ.toFun f x) * Hσ.toFun g x mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))

      The inner product on Hσ is the L2 inner product with weighted measure

      theorem Frourio.Hσ_inner_conj_symm (σ : ) (f g : ( σ)) :

      The inner product conjugate symmetry in Hσ

      theorem Frourio..norm_squared (σ : ) (f : ( σ)) :
      f ^ 2 = (∫⁻ (x : ), Hσ.toFun f x‖₊ ^ 2 mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))).toReal

      Hσ is a complete metric space

      theorem Frourio..cauchy_complete (σ : ) (f : ( σ)) (hf : CauchySeq f) :
      ∃ (g : ( σ)), Filter.Tendsto f Filter.atTop (nhds g)

      Cauchy sequences in Hσ converge

      theorem Frourio.weightedMeasure_finite_on_bounded (σ a b : ) (ha : 0 < a) (hb : a < b) :

      Conditions for the weighted measure to be finite on bounded sets

      The weighted measure is sigma-finite

      The global weighted measure is always infinite. We postpone the analytic divergence proof for a future refinement.

      theorem Frourio.exists_simple_func_approximation {σ : } (f' : (MeasureTheory.Lp 2 (weightedMeasure σ))) (ε : ) ( : 0 < ε) :
      ∃ (s : (MeasureTheory.Lp.simpleFunc 2 (weightedMeasure σ))), dist (↑s) f' < ε

      Helper lemma: eLpNorm of indicator function is at most the original

      theorem Frourio.measurable_extended_mollifier (δ : ) :
      Measurable fun (t : ) => if t Set.Ioo (-δ) δ then Real.exp (-1 / (δ ^ 2 - t ^ 2)) else 0

      Measurability of the extended mollifier function

      Helper lemma: The indicator of toSimpleFunc on a measurable set is AE strongly measurable

      theorem Frourio.truncated_simple_func_mem_Lp {σ : } (s : (MeasureTheory.Lp.simpleFunc 2 (weightedMeasure σ))) (n : ) :
      let truncate := fun (x : ) => if 1 / n < x x < n then (MeasureTheory.Lp.simpleFunc.toSimpleFunc s) x else 0; MeasureTheory.MemLp truncate 2 (weightedMeasure σ)

      Helper lemma: A truncated simple function with compact support is in L²

      theorem Frourio.mollifier_extended_continuous (δ' : ) :
      0 < δ'ContinuousOn (fun (s : ) => if |s| < δ' then Real.exp (-1 / (δ' ^ 2 - s ^ 2)) else 0) (Set.uIcc (-δ') δ')
      theorem Frourio.integral_Ioo_eq_intervalIntegral (δ : ) (hδ_pos : 0 < δ) :
      let f_extended := fun (t : ) => if t Set.Ioo (-δ) δ then Real.exp (-1 / (δ ^ 2 - t ^ 2)) else 0; (t : ) in Set.Ioo (-δ) δ, Real.exp (-1 / (δ ^ 2 - t ^ 2)) = (t : ) in -δ..δ, f_extended t

      The integral of exp(-1/(δ²-t²)) over the open interval (-δ, δ) equals its interval integral over [-δ, δ] with extended function

      theorem Frourio.mollifier_normalization_positive (δ : ) (hδ_pos : 0 < δ) :
      0 < (t : ) in Set.Ioo (-δ) δ, Real.exp (-1 / (δ ^ 2 - t ^ 2))

      The normalization constant for the mollifier is positive

      theorem Frourio.mollifier_smooth_at_boundary (δ : ) :
      0 < δlet Z := (t : ) in Set.Ioo (-δ) δ, Real.exp (-1 / (δ ^ 2 - t ^ 2)); let φ := fun (y : ) => if |y| < δ then Real.exp (-1 / (δ ^ 2 - y ^ 2)) / Z else 0; ContDiffAt (↑) φ δ ContDiffAt (↑) φ (-δ)

      The mollifier function is smooth at both boundary points

      Measurability of truncated shifted simple function using toSimpleFunc

      theorem Frourio.convolution_smooth_of_smooth_compsupp_and_integrable {φ f : } (hφ_smooth : ContDiff (↑) φ) (hφ_supp : HasCompactSupport φ) (hf_integrable : ∀ (x : ), MeasureTheory.Integrable (fun (y : ) => f (x - y)) MeasureTheory.volume) :
      ContDiff fun (x : ) => (y : ), φ y * f (x - y)

      Convolution of a smooth function with compact support and an integrable function is smooth

      theorem Frourio.smooth_mollifier_convolution_truncated {δ : } {n : } {σ : } (φ_δ : ) (s : (MeasureTheory.Lp.simpleFunc 2 (weightedMeasure σ))) (hφ_smooth : ContDiff (↑) φ_δ) (hφ_supp : ∀ (y : ), |y| > δφ_δ y = 0) (hδ_pos : 0 < δ) :
      ContDiff fun (x : ) => (y : ), (φ_δ y) * if 1 / n < x - y x - y < n then (MeasureTheory.Lp.simpleFunc.toSimpleFunc s) (x - y) else 0

      Convolution of smooth mollifier with truncated simple function is smooth

      theorem Frourio.convolution_mollifier_truncated_has_compact_support {δ : } {n : } (φ_δ : ) (truncate : ) (hφ_supp : ∀ (y : ), |y| > δφ_δ y = 0) (hδ_pos : 0 < δ) (hn_pos : 0 < n) (h_truncate_supp : xSet.Ioo (1 / n) n, truncate x = 0) :
      R > 0, xR, (y : ), (φ_δ y) * truncate (x - y) = 0

      Convolution of mollifier with truncated function has compact support

      theorem Frourio.convolution_mollifier_truncated_zero_outside_support {δ : } {n : } (φ_δ : ) (truncate : ) (hφ_supp : ∀ (y : ), |y| > δφ_δ y = 0) (h_truncate_supp : xSet.Ioo (1 / n) n, truncate x = 0) (x : ) :
      x < 1 / n - δ (y : ), (φ_δ y) * truncate (x - y) = 0

      Convolution of mollifier with truncated function vanishes outside support

      theorem Frourio.smooth_convolution_measurable {σ : } (smooth_func : ) (h_smooth : ContDiff (↑) smooth_func) :

      Smooth convolution with compact support is measurable

      theorem Frourio.convolution_vanishes_on_nonpositive {δ : } {n : } (φ_δ : ) (truncate : ) (hφ_supp : ∀ (y : ), |y| > δφ_δ y = 0) (hδ_small : δ 1 / n) (h_truncate_supp : xSet.Ioo (1 / n) n, truncate x = 0) (x : ) :
      x 0 (y : ), (φ_δ y) * truncate (x - y) = 0

      The convolution of a mollifier with a truncated function vanishes on (-∞, 0] when δ is sufficiently small

      theorem Frourio.smooth_compact_support_memLp {σ : } (smooth_func : ) (h_smooth : ContDiff (↑) smooth_func) (h_support : R > 0, xR, smooth_func x = 0) (h_support_left : x0, smooth_func x = 0) (h_support_away_zero : a > 0, xSet.Ioo 0 a, smooth_func x = 0) :

      Smooth function with compact support away from 0 is in L²

      theorem Frourio.smooth_mollifier_convolution_memLp {σ δ : } {n : } (φ_δ : ) (s : (MeasureTheory.Lp.simpleFunc 2 (weightedMeasure σ))) (hφ_smooth : ContDiff (↑) φ_δ) (hφ_supp : ∀ (y : ), |y| > δφ_δ y = 0) (hδ_pos : 0 < δ) (hn_pos : 0 < n) (hδ_bound : δ < 1 / n) :
      MeasureTheory.MemLp (fun (x : ) => (y : ), (φ_δ y) * if 1 / n < x - y x - y < n then (MeasureTheory.Lp.simpleFunc.toSimpleFunc s) (x - y) else 0) 2 (weightedMeasure σ)

      Smooth functions that are convolutions of mollifiers with truncated simple functions are in L²