Documentation

Frourio.Analysis.MellinBasic

theorem Frourio.lintegral_withDensity_expand {g : ENNReal} (hg : Measurable g) (hwσ : Measurable ) :
∫⁻ (x : ), g x mulHaar.withDensity = ∫⁻ (x : ), g x * x mulHaar
theorem Frourio.weight_product_simplify (σ x : ) (hx : x Set.Ioi 0) :
ENNReal.ofReal (x ^ (2 * σ - 1)) * ENNReal.ofReal (1 / x) = ENNReal.ofReal (x ^ (2 * σ - 1) / x)
theorem Frourio.Hσ_norm_squared {σ : } (f : ( σ)) :
f ^ 2 = (∫⁻ (x : ) in Set.Ioi 0, Hσ.toFun f x‖₊ ^ 2 * ENNReal.ofReal (x ^ (2 * σ - 1) / x)).toReal

Helper lemma: The preimage of s under log, intersected with (0,∞), equals exp(s)

Helper lemma: For a measurable set s, the volume of exp(s) equals the integral of exp over s.

Helper lemma: exp maps ℝ onto (0,∞)

Helper lemma: The image of a measurable set under exp is measurable

Pushforward of Lebesgue measure on (0,∞) by log equals Lebesgue on weighted by the density exp. Concretely: This is the change-of-variables formula for x = exp t at the level of measures.

Change of Variables Lemmas for Mellin-Plancherel #

These lemmas establish the key change of variables formulas needed for the logarithmic pullback map from L²(ℝ) to Hσ.

Change of variables formula: x = exp(t) for integration over (0,∞). For a measurable function f and real α, we have: ∫₀^∞ f(log x) · x^α dx = ∫₋∞^∞ f(t) · exp((α + 1) · t) dt

Special case for α = -1: ∫₀^∞ f(log x) · x⁻¹ dx = ∫₋∞^∞ f(t) dt

Relationship between mulHaar measure and volume with density 1/x

theorem Frourio.norm_cpow_real (x σ : ) (hx : 0 < x) :
x ^ (-σ)‖₊ = x.toNNReal.rpow (-σ)

For positive real x and real σ, the norm of x^(-σ) as a complex number equals x^(-σ)

Small helper lemmas used in local algebraic cancellations

Auxiliary placeholder embedding from L²(ℝ) (Lebesgue) into . In the present phase, this acts as the zero map to keep the API flowing. It will be replaced by the genuine logarithmic pullback inverse in P3.

theorem Frourio.hwσ_meas_for_optimization (σ : ) ( : ENNReal) (hwσ : = fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) :
theorem Frourio.hx_cancel_for_optimization (σ x : ) (hx' : 0 < x) ( : ENNReal) (hwσ : = fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) :
x ^ (2⁻¹ - σ)‖₊ * (x ^ (2⁻¹ - σ)‖₊ * x) = 1
theorem Frourio.hg_meas_for_optimization (σ : ) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) (g : ) (hg_def : g = fun (x : ) => if x_1 : 0 < x then f (Real.log x) * x ^ (-(σ - (1 / 2))) else 0) :
Measurable fun (x : ) => g x‖₊ ^ 2
theorem Frourio.expand_withDensity (g : ) ( : ENNReal) (hg_meas : Measurable fun (x : ) => g x‖₊ ^ 2) (hwσ_meas : Measurable ) :
∫⁻ (x : ), g x‖₊ ^ 2 mulHaar.withDensity = ∫⁻ (x : ), g x‖₊ ^ 2 * x mulHaar
noncomputable def Frourio.toHσ_ofL2 (σ : ) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) :
( σ)

Map an L²(ℝ) function to an element of . Implementation via logarithmic pullback: f(t) ↦ f(log x) with appropriate measure adjustment. For f ∈ L²(ℝ), we define g(x) = f(log x) · x^(-σ) which lies in Hσ.

Equations
Instances For