Documentation

Frourio.Analysis.SchwartzDensity.SchwartzDensityCore0

theorem Frourio.lintegral_union_disjoint {α : Type u_1} [MeasurableSpace α] (μ : MeasureTheory.Measure α) {s t : Set α} (hs : MeasurableSet s) (ht : MeasurableSet t) (hst : Disjoint s t) (f : αENNReal) (hf : Measurable f) :
∫⁻ (x : α) in s t, f x μ = ∫⁻ (x : α) in s, f x μ + ∫⁻ (x : α) in t, f x μ

Manual construction of lintegral_union for disjoint sets

theorem Frourio.schwartz_finite_on_unit_interval {σ : } ( : 1 / 2 < σ) (f : SchwartzMap ) :
(∫⁻ (x : ) in Set.Ioc 0 1, f x‖ₑ ^ 2 mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) <

Schwartz functions have finite weighted L² norm on (0,1] for σ > 1/2

Schwartz functions have finite weighted L² norm on (1,∞) for any σ

theorem Frourio.schwartz_mem_Hσ {σ : } ( : 1 / 2 < σ) (f : SchwartzMap ) :
MeasureTheory.MemLp (fun (x : ) => if x > 0 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1)))

Schwartz functions restricted to (0,∞) belong to Hσ for σ > 1/2

noncomputable def Frourio.schwartzToHσ {σ : } ( : 1 / 2 < σ) (f : SchwartzMap ) :
( σ)

The embedding of Schwartz functions into Hσ for σ > 1/2

Equations
Instances For
    theorem Frourio.schwartzToHσ_linear {σ : } ( : 1 / 2 < σ) (a : ) (f g : SchwartzMap ) :
    schwartzToHσ (a f + g) = a schwartzToHσ f + schwartzToHσ g

    The embedding is linear for σ > 1/2

    theorem Frourio.norm_toLp_eq_toReal_eLpNorm {σ : } ( : 1 / 2 < σ) (f : SchwartzMap ) :
    MeasureTheory.MemLp.toLp (fun (x : ) => if x > 0 then f x else 0) = (MeasureTheory.eLpNorm (fun (x : ) => if x > 0 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1)))).toReal

    The norm of the toLp embedding equals the ENNReal.toReal of the eLpNorm

    theorem Frourio.schwartzToHσ_ae_eq {σ : } ( : 1 / 2 < σ) (φ : SchwartzMap ) :
    (schwartzToHσ φ) =ᵐ[mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))] fun (x : ) => if x > 0 then φ x else 0

    For any f ∈ Hσ, schwartzToHσ hσ φ and the truncated φ agree a.e. for σ > 1/2

    theorem Frourio.eLpNorm_bound_on_tail {σ : } {k₁ : } (hσk : σ + 1 / 2 k₁) (f : SchwartzMap ) :
    MeasureTheory.eLpNorm (fun (x : ) => if x Set.Ioi 1 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) ENNReal.ofReal ((SchwartzMap.seminorm k₁ 0) f * (1 / (2 * k₁ - 2 * σ)))
    theorem Frourio.eLpNorm_bound_on_unit_interval {σ : } (f : SchwartzMap ) (M : ) (hM_bound : (∫⁻ (x : ) in Set.Ioc 0 1, ENNReal.ofReal (x ^ (2 * σ - 1)) mulHaar) ^ (1 / 2) ENNReal.ofReal M) :
    MeasureTheory.eLpNorm (fun (x : ) => if x Set.Ioc 0 1 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) ENNReal.ofReal ((SchwartzMap.seminorm 0 0) f * M)

    Bound for the eLpNorm of a Schwartz function on the unit interval (0,1]

    theorem Frourio.eLpNorm_split_at_one {σ : } (f : SchwartzMap ) :
    MeasureTheory.eLpNorm (fun (x : ) => if x > 0 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) MeasureTheory.eLpNorm (fun (x : ) => if x Set.Ioc 0 1 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) + MeasureTheory.eLpNorm (fun (x : ) => if x Set.Ioi 1 then f x else 0) 2 (mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1)))

    Splitting the eLpNorm of a function on (0,∞) into (0,1] and (1,∞) parts

    theorem Frourio.weight_function_L2_bound_unit {σ : } ( : 1 / 2 < σ) :
    ∃ (M : ), 0 < M (∫⁻ (x : ) in Set.Ioc 0 1, ENNReal.ofReal (x ^ (2 * σ - 1)) mulHaar) ^ (1 / 2) ENNReal.ofReal M

    The weight function has finite L² norm on (0,1] for σ > 1/2

    theorem Frourio.mulHaar_measure_Icc_lt_top {a b : } (ha : 0 < a) :
    a bmulHaar (Set.Icc a b) <

    Finiteness of the mulHaar measure on a positive closed interval.

    theorem Frourio.weight_integrableOn_Icc {σ a b : } (ha : 0 < a) (hab : a b) :
    MeasureTheory.IntegrableOn (fun (x : ) => x ^ (2 * σ - 1)) (Set.Icc a b) mulHaar

    Integrability of the weight x^(2σ-1) on a positive closed interval with respect to mulHaar.

    theorem Frourio.weight_locallyIntegrable {σ : } :
    1 / 2 < σMeasureTheory.LocallyIntegrableOn (fun (x : ) => x ^ (2 * σ - 1)) (Set.Ioi 0) mulHaar

    The weight function x^(2σ-1) is locally integrable on (0,∞) for σ > 1/2

    theorem Frourio.memLp_of_Hσ {σ : } (f : ( σ)) :

    Elements of σ lie in the defining weighted L² space.

    Simple functions with bounded support are integrable in Lebesgue measure

    theorem Frourio.finite_support_bounded (f : ) (hf_finite : (Function.support f).Finite) :

    Simple functions with finite support have bounded support

    theorem Frourio.range_norm_subset_tsupport_image_with_zero (φ : ) :
    (Set.range fun (x : ) => φ x) Set.insert 0 ((fun (x : ) => φ x) '' tsupport φ)
    theorem Frourio.continuous_convolution_integrable_smooth (f : ) (φ : ) (hf_integrable : MeasureTheory.Integrable f MeasureTheory.volume) (hφ_smooth : ContDiff (↑) φ) (hφ_compact : HasCompactSupport φ) :
    Continuous fun (x : ) => (y : ), f y * (φ (x - y))

    Convolution of integrable function with smooth compact support function is continuous

    Truncations of simple functions are integrable