theorem
Frourio.memLp_two_iff_integrable_sq_complex
(f : ℝ → ℂ)
(hmeas : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
:
MeasureTheory.MemLp f 2 MeasureTheory.volume ↔ MeasureTheory.Integrable (fun (t : ℝ) => ‖f t‖ ^ 2) MeasureTheory.volume
theorem
Frourio.gaussian_memLp
(a : ℝ)
(ha : 0 < a)
:
MeasureTheory.MemLp (fun (t : ℝ) => Real.exp (-a * t ^ 2)) 2 MeasureTheory.volume
theorem
Frourio.gaussian_memLpC_cexp
(a : ℝ)
(ha : 0 < a)
:
MeasureTheory.MemLp (fun (t : ℝ) => Complex.exp (-(↑a * ↑t ^ 2))) 2 MeasureTheory.volume
theorem
Frourio.gaussian_memLpC
(a : ℝ)
(ha : 0 < a)
:
MeasureTheory.MemLp (fun (t : ℝ) => ↑(Real.exp (-a * t ^ 2))) 2 MeasureTheory.volume
正規化ガウス関数の構成
theorem
Frourio.gaussian_memLp_pi_delta_sq
(δ : ℝ)
(hδ : 0 < δ)
:
MeasureTheory.MemLp (fun (t : ℝ) => Complex.exp (-(↑Real.pi / ↑δ ^ 2 * ↑t ^ 2))) 2 MeasureTheory.volume
Helper lemma: Complex Gaussian exp(-(π/δ²) * t²) in L²
theorem
Frourio.lintegral_norm_sq_eq_integral_norm_sq
(f : ℝ → ℂ)
(hmeas : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
(hf : MeasureTheory.MemLp f 2 MeasureTheory.volume)
:
Helper lemma: Convert L² norm from Lebesgue integral to regular integral form
補題2-3(包絡評価): δ > 0
に対し,build_normalized_gaussian
で得た
正規化ガウス w
は a.e. で
‖w t‖ ≤ (2)^(1/4)/√δ · exp(-π t²/δ²)
を満たす。
theorem
Frourio.tail_bound_calc_helper
(δ R : ℝ)
(hL :
∫ (t : ℝ) in {t : ℝ | R < |t|}, Real.exp (-2 * Real.pi * t ^ 2 / δ ^ 2) = ∫ (t : ℝ), {t : ℝ | R < |t|}.indicator (fun (t : ℝ) => Real.exp (-2 * Real.pi * t ^ 2 / δ ^ 2)) t)
(h_int_le :
∫ (t : ℝ), {t : ℝ | R < |t|}.indicator (fun (t : ℝ) => Real.exp (-2 * Real.pi * t ^ 2 / δ ^ 2)) t ≤ ∫ (t : ℝ), Real.exp (-Real.pi * R ^ 2 / δ ^ 2) * Real.exp (-Real.pi * t ^ 2 / δ ^ 2))
:
Helper lemma for the tail bound calculation
Gaussian tail bound: The L² norm of a Gaussian outside radius R decays exponentially
For normalized Gaussian with width δ, the L² mass outside radius R vanishes as δ → 0