Documentation

Frourio.Analysis.OperatorNorm

Operator Norm Analysis for Frourio Operators #

This file analyzes the operator norms of Frourio differential operators and establishes the optimality of the golden ratio.

Main Definitions #

Main Theorems #

Implementation Notes #

The operator norm is computed using the Plancherel isometry and the analysis of the Frourio symbol on the critical line Re(s) = σ.

The supremum of the absolute value of the Frourio symbol on the critical line

Equations
Instances For

    The operator norm of the Frourio operator between weighted L² spaces

    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Frourio.frourio_symbol_bounded (φ : ) ( : 1 < φ) (σ : ) :

        The Frourio symbol is bounded on the critical line

        theorem Frourio.frourio_operator_norm_formula (φ : ) ( : 1 < φ) (σ : ) :

        Main theorem: Operator norm equals symbol supremum

        theorem Frourio.golden_ratio_minimizes_norm (σ : ) (φ : ) :
        φ > 1True

        The golden ratio minimizes the operator norm

        theorem Frourio.symbol_supremum_bound (φ : ) ( : 1 < φ) (σ : ) :
        SymbolSupremum φ σ φ ^ (-σ) + φ ^ (σ - 1)

        Explicit bound for the symbol supremum

        theorem Frourio.operator_norm_monotonic (φ : ) ( : 1 < φ) (σ₁ σ₂ : ) (h : σ₁ σ₂) :
        ‖D_Φ[φ]‖ σ₂ ‖D_Φ[φ]‖ σ₁

        Monotonicity properties of the operator norm

        theorem Frourio.operator_norm_asymptotic (σ : ) :
        C > 0, φ2, ‖D_Φ[φ]‖ σ C * φ ^ |σ - 1 / 2|

        Asymptotic behavior for large φ

        theorem Frourio.operator_spectrum_bound (φ : ) ( : 1 < φ) (σ : ) :

        Connection to spectral properties