D9: Golden extremality (skeleton)
We provide a minimal optimization-style statement: given an admissible class and an objective, the golden operator is extremal (e.g. optimal) within that class. The precise objective and admissibility are deferred to later phases; here we only fix the API.
Optimization context for 2-point Frourio operators.
- Adm : FrourioOperator 2 → Prop
- Obj : FrourioOperator 2 → ℝ
Instances For
Golden extremality statement: GoldenFrourioOperator
minimizes the
objective over the admissible class.
Equations
- Frourio.GoldenExtremality C = (C.Adm Frourio.GoldenFrourioOperator ∧ ∀ (op : Frourio.FrourioOperator 2), C.Adm op → C.Obj Frourio.GoldenFrourioOperator ≤ C.Obj op)