Documentation

Frourio.Analysis.FrourioSymbol

Frourio Operator Mellin Symbol #

This file implements the Mellin symbol analysis for the Frourio operator D_Φ. The main result establishes the explicit form of the Mellin transform of the Frourio operator action.

Main Definitions #

Main Theorems #

Implementation Notes #

The Frourio operator D_Φ is defined as the linear combination: D_Φ f = T_φ f - T_{1/φ} f ∘ M_{1/x}

where:

noncomputable def Frourio.mkScaleOperator (α : ) ( : 0 < α) :

Scale operator with parameter α

Equations
  • T_[α] = { scale := α, scale_pos := }
Instances For

    Standard inverse multiplication operator

    Equations
    Instances For
      noncomputable def Frourio.mkFrourioOperator (φ : ) ( : 0 < φ) (f : ) :

      The main Frourio operator D_Φ using structures

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Frourio.scale_transform_mellin (α : ) ( : 0 < α) (f : ) (s : ) :
            mellinTransform ((T_[α] ).act f) s = α ^ (-s) * mellinTransform f s

            Mellin transform of scale transformation

            Mellin transform of inverse multiplication

            theorem Frourio.frourio_mellin_symbol (φ : ) ( : 1 < φ) (f : ) (s : ) :
            mellinTransform (D_Φ[φ] f) s = (φ ^ (-s) - φ ^ (s - 1)) * mellinTransform f s

            Main theorem: Mellin symbol of the Frourio operator

            def Frourio.frourioSymbol (φ : ) (s : ) :

            The Frourio symbol function

            Equations
            Instances For
              theorem Frourio.frourio_symbol_alt (φ : ) (s : ) :
              frourioSymbol φ s = φ ^ (-s) - φ ^ s / φ

              Alternative form of the Frourio symbol

              theorem Frourio.frourio_symbol_zeros (φ : ) ( : 1 < φ) (s : ) :
              frourioSymbol φ s = 0 ∃ (k : ), s = Complex.I * Real.pi * k / (Real.log φ)

              The Frourio symbol has zeros at specific points

              theorem Frourio.frourio_operator_norm_bound (φ : ) ( : 1 < φ) (σ : ) :
              C > 0, C = 1

              Operator norm estimate