Documentation

Frourio.Analysis.MellinPlancherel

@[simp]
theorem Complex.norm_ofReal (x : ) :
x = |x|

Core Mellin-Plancherel Theorems #

This section contains the fundamental theorems of Mellin-Plancherel theory that establish Uσ as an isometry between Hσ and L²(ℝ).

noncomputable def Frourio.LogPull (σ : ) (f : ( σ)) :

Logarithmic pullback from to unweighted L²(ℝ). We transport along x = exp t and incorporate the Jacobian/weight factor so that ‖LogPull σ f‖_{L²(ℝ)} = ‖f‖_{Hσ}. Explicitly, (LogPull σ f)(t) = e^{(σ - 1/2) t} · f(e^t).

Equations
Instances For
    @[simp]
    theorem Frourio.LogPull_apply (σ : ) (f : ( σ)) (t : ) :
    LogPull σ f t = (Real.exp ((σ - 1 / 2) * t)) * Hσ.toFun f (Real.exp t)
    theorem Frourio.weight_measurable (σ : ) :
    Measurable fun (t : ) => ENNReal.ofReal (Real.exp (2 * σ * t))

    Helper lemma: the weight function is measurable

    theorem Frourio.LogPull_measurable (σ : ) (f : ( σ)) :

    Helper lemma: LogPull preserves measurability

    theorem Frourio.LogPull_norm_sq (σ : ) (f : ( σ)) (t : ) :
    LogPull σ f t ^ 2 = Real.exp ((2 * σ - 1) * t) * Hσ.toFun f (Real.exp t) ^ 2
    theorem Frourio.LogPull_integrand_eq (σ : ) (f : ( σ)) (t : ) :
    theorem Frourio.LogPull_isometry (σ : ) (f : ( σ)) :
    f ^ 2 = (∫⁻ (x : ) in Set.Ioi 0, Hσ.toFun f x‖₊ ^ 2 * ENNReal.ofReal (x ^ (2 * σ - 1) / x)).toReal

    Isometry identity for : a concrete norm formula. This version exposes the -norm as an explicit weighted integral on (0,∞). It serves as the measurable backbone for the logarithmic substitution step in plan0.

    theorem Frourio.Hσ_zero_integral (σ : ) :
    ∫⁻ (x : ) in Set.Ioi 0, Hσ.toFun 0 x‖₊ ^ 2 * ENNReal.ofReal (x ^ (2 * σ - 1) / x) = 0

    When f = 0 in Hσ, the L2 integral of its squared norm is 0

    The Mellin transform of an L² function on ℝ₊ with weight t^(2σ-1) belongs to L²(ℝ) when evaluated along the critical line Re(s) = σ

    theorem Frourio.mellin_direct_isometry (σ : ) :
    C > 0, ∀ (f : ( σ)), (τ : ), LogPull σ f τ ^ 2 = C * f ^ 2

    Direct isometry theorem: The Mellin transform preserves L² norm

    theorem Frourio.mellin_plancherel_formula (σ : ) (f : ( σ)) :
    C > 0, (τ : ), LogPull σ f τ ^ 2 = C * f ^ 2

    Mellin-Plancherel Formula: The Mellin transform preserves the L² norm up to a constant factor depending on σ

    theorem Frourio.exp_weight_cancel (σ τ : ) :
    (Real.exp ((σ - 1 / 2) * τ)) * (Real.exp τ) ^ (-(σ - (1 / 2))) = 1

    Auxiliary identity: the Jacobian weight appearing in LogPull cancels with the inverse weight built into toHσ_ofL2.