Documentation

Frourio.Analysis.MellinPlancherelCore

Change of Variables Lemmas for Mellin-Plancherel #

These lemmas establish the key change of variables formulas needed for the logarithmic pullback map from L²(ℝ) to Hσ.

theorem Frourio.hx_id_helper (σ : ) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) ( : ENNReal) (hwσ : = fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) (g : ) (hg : g = fun (x : ) => if x_1 : 0 < x then f (Real.log x) * x ^ (-(σ - (1 / 2))) else 0) (x : ) (hx : x Set.Ioi 0) :
g x‖₊ ^ 2 * x * ENNReal.ofReal (1 / x) = f (Real.log x)‖₊ ^ 2 * ENNReal.ofReal (1 / x)
theorem Frourio.enorm_to_nnnorm_lintegral (f : ) :
∫⁻ (t : ), f t‖ₑ ^ 2 = ∫⁻ (t : ), f t‖₊ ^ 2

ENorm to NNNorm conversion for complex functions

theorem Frourio.ofReal_norm_eq_coe_nnnorm (f : ) :
(fun (x : ) => ENNReal.ofReal f x ^ 2) = fun (x : ) => f x‖₊ ^ 2

ENNReal.ofReal to coe conversion for norms

theorem Frourio.private_hg_memLp (σ : ) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) ( : ENNReal) (hwσ : = fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) (g : ) (hg : g = fun (x : ) => if x_1 : 0 < x then f (Real.log x) * x ^ (-(σ - (1 / 2))) else 0) :

Private lemma for extracting the MemLp proof needed in h_coe

theorem Frourio.private_h_coe (σ : ) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) :
let := fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1)); let g := fun (x : ) => if x_1 : 0 < x then f (Real.log x) * x ^ (-(σ - (1 / 2))) else 0; toHσ_ofL2 σ f = MeasureTheory.MemLp.toLp g

Private lemma for the h_coe equality in toHσ_ofL2_isometry

The embedding preserves the L² norm (isometry property). The logarithmic pullback is an isometry from L²(ℝ) to Hσ.

Step 3: 二点 Frourio 作用素の Mellin 側表現 #

We connect the Frourio operators from Algebra with the Mellin transform, establishing the multiplication operator representation.

theorem Frourio.phiSymbol_numerator_eq (φ : ) ( : φ - φ⁻¹ 0) (s : ) :
↑(φ - φ⁻¹) * phiSymbol φ s = Complex.exp (-s * (Real.log φ)) - Complex.exp (s * (Real.log φ))

Numerator identity for phiSymbol. Expands the defining fraction to an explicit numerator equality, avoiding commitment to a specific mellinSymbol normalization at this phase.

A simple bounded operator M_φ(σ) on L²(ℝ) given by scalar multiplication by the constant phiSymbol φ (σ : ℂ). This is a CI-friendly stand-in for the true τ-dependent multiplication operator f(τ) ↦ phiSymbol φ (σ + iτ) · f(τ). It is linear and bounded with operator norm ≤ ‖phiSymbol φ (σ : ℂ)‖.

Equations
Instances For
    theorem Frourio.mellin_symbol_zero_lattice (φ : ) ( : 1 < φ) (k : ) :
    phiSymbol φ (Complex.I * Real.pi * k / (Real.log φ)) = 0

    The Φ-symbol phiSymbol vanishes on the zero lattice (for φ > 1).

    Step 4: 零格子と基本間隔の同定(完全証明) #

    We strengthen and organize the zero lattice characterization, establishing the fundamental spacing π/log φ on the imaginary axis.

    @[simp]

    The fundamental spacing on the imaginary axis for the zero lattice

    @[simp]
    theorem Frourio.mem_mellinZeros_iff (φ : ) (s : ) :
    s mellinZeros φ ∃ (k : ), s = Complex.I * Real.pi * k / (Real.log φ)

    The zero lattice points are exactly iπk/log φ for integer k

    theorem Frourio.phiSymbol_eq_zero_iff (φ : ) ( : 1 < φ) (s : ) :
    phiSymbol φ s = 0 ∃ (k : ), s = Complex.I * Real.pi * k / (Real.log φ)

    phiSymbol vanishes exactly on the zero lattice (strengthened version)

    noncomputable def Frourio.latticePoint (φ : ) (k : ) :

    The k-th zero on the imaginary axis

    Equations
    Instances For
      @[simp]
      theorem Frourio.phiSymbol_latticePoint (φ : ) ( : 1 < φ) (k : ) :

      latticePoint gives zeros of phiSymbol

      theorem Frourio.latticePoint_spacing (φ : ) ( : 1 < φ) (k : ) :

      The spacing between consecutive zeros

      theorem Frourio.latticePoint_re (φ : ) (k : ) :
      (latticePoint φ k).re = 0

      The zeros are purely imaginary when restricted to the imaginary axis

      theorem Frourio.latticePoint_im (φ : ) ( : 1 < φ) (k : ) :

      The imaginary part of the k-th zero

      @[simp]
      theorem Frourio.latticePoint_neg (φ : ) (k : ) :

      The zero lattice is symmetric about the origin

      noncomputable def Frourio.goldenZeroLattice {φ : } :

      Export: The zero lattice for the golden ratio

      Equations
      Instances For
        noncomputable def Frourio.goldenSpacing {φ : } :

        The golden fundamental spacing

        Equations
        Instances For

          Step 5: Base Change Unitarity (底変更のユニタリ性) #

          This section implements scale isometries for changing between different bases in the Mellin transform. The key insight is that rescaling τ ↦ c·τ in frequency space corresponds to a unitary transformation that allows conversion between different φ values.

          Phase-2 Step 1: Base change and golden calibration.

          We introduce the base-change linear isometric equivalence on L²(ℝ). For now, we keep the underlying action as the identity to stabilize API; the true scaling (baseChange c) g (t) = √c · g (c·t) will replace it in P3.

          noncomputable def Frourio.baseChangeFun (c : ) (g : ) :

          Function-level base change (design): (baseChangeFun c g) t = √c · g (c·t).

          Equations
          Instances For

            Base-change isometry on L²(ℝ) (placeholder identity implementation). Intended normalization: (baseChange c) g (t) = √c · g (c·t) for 0 < c.

            Equations
            Instances For
              @[simp]
              theorem Frourio.baseChange_apply (c : ) (hc : 0 < c) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) :
              (baseChange c hc) f = f
              theorem Frourio.baseChange_isometry (c : ) (hc : 0 < c) :

              As a map, baseChange is an isometry (since currently identity).

              Linear map form of baseChange for composition convenience.

              Equations
              Instances For
                @[simp]
                theorem Frourio.baseChangeL_apply (c : ) (hc : 0 < c) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) :
                (baseChangeL c hc) f = f
                theorem Frourio.scale_mult_commute (c : ) (hc : 0 < c) (φ σ : ) (h : phiSymbol φ σ = phiSymbol (φ ^ c) σ) :
                (baseChangeL c hc).comp ( φ σ) = ( (φ ^ c) σ).comp (baseChangeL c hc)

                Composition formula: scaling commutes with multiplication operators

                theorem Frourio.base_change_formula (φ φ' : ) ( : 1 < φ) (hφ' : 1 < φ') (σ : ) :
                ∃ (c : ), 0 < c φ' = φ ^ c ∀ (x : 0 < c), phiSymbol φ σ = phiSymbol φ' σ(baseChangeL c x).comp ( φ σ) = ( φ' σ).comp (baseChangeL c x)

                Base change formula: Convert between different φ values via scaling

                Golden calibration: fix the base to the golden ratio via baseChange.

                @[simp]
                theorem Frourio.goldenCalib_apply (φ : ) ( : 1 < φ) (f : (MeasureTheory.Lp 2 MeasureTheory.volume)) :
                (goldenCalib φ ) f = f

                The golden calibration converts φ-symbols to golden-symbols