Documentation

Frourio.Analysis.MellinParseval

Basic L² bound for functions on measurable sets

theorem Frourio.ennreal_pow_mul_le_of_le {a b c d : ENNReal} (h1 : a b) (h2 : c < d) (n : ) :
a ^ n * c b ^ n * d

Helper lemma for multiplying inequalities with ENNReal powers

theorem Frourio.l2_integral_volume_bound (f_L2 : ) (s : Set ) (hs_meas : MeasurableSet s) :

The L² integral over a subset is bounded by the total L² norm squared

Helper lemma for measure continuity on closed balls

The measure of tail sets intersected with closed balls tends to zero

The tail set {x : ℝ | R < ‖x‖} is measurable for every real R.

theorem Frourio.tail_set_subset {R₁ R₂ : } (hR : R₁ R₂) :
{x : | R₂ < x} {x : | R₁ < x}

If R₁ ≤ R₂, then the tail sets are nested: {‖x‖ > R₂} ⊆ {‖x‖ > R₁}.

theorem Frourio.indicator_le_indicator_of_subset {α : Type u_1} {s t : Set α} (h_subset : s t) (f : αENNReal) :

For nonnegative functions, the indicators of nested sets satisfy a pointwise inequality.

theorem Frourio.tail_integral_mono (f : ) {R₁ R₂ : } (hR : R₁ R₂) :
∫⁻ (x : ) in {x : | R₂ < x}, f x‖₊ ^ 2 ∫⁻ (x : ) in {x : | R₁ < x}, f x‖₊ ^ 2

Increasing the tail radius can only decrease the tail integral.

Every tail integral is bounded by the full L² norm squared.

theorem Frourio.l2_tail_integral_small (f_L2 : ) (h_finite : MeasureTheory.eLpNorm f_L2 2 MeasureTheory.volume < ) (δ : ) ( : 0 < δ) :
R₀1, RR₀, ∫⁻ (x : ) in {x : | R < x}, f_L2 x‖₊ ^ 2 < ENNReal.ofReal δ

Tail integral of L² functions can be made arbitrarily small

theorem Frourio.truncation_error_eq_tail_norm (f : ) (_hf : MeasureTheory.MemLp f 2 MeasureTheory.volume) (R : ) (_hR : 0 < R) :
MeasureTheory.eLpNorm (f - fun (x : ) => if x R then f x else 0) 2 MeasureTheory.volume = (∫⁻ (x : ) in {x : | R < x}, f x‖₊ ^ 2) ^ (1 / 2)

The L² norm of the difference between a function and its truncation equals the square root of the tail integral

theorem Frourio.l2_truncation_approximation (f_L2 : ) (hf : MeasureTheory.MemLp f_L2 2 MeasureTheory.volume) (ε : ) ( : 0 < ε) :
R > 0, MeasureTheory.eLpNorm (f_L2 - fun (x : ) => if x R then f_L2 x else 0) 2 MeasureTheory.volume < ENNReal.ofReal ε

Smooth compactly supported functions are dense in L²(ℝ)

If f is in L² and we truncate it to a ball, the result is still in L²

Simple functions with compact support are dense in L² functions with compact support

The Lebesgue measure of the topological support of a compactly supported function is finite.

theorem Frourio.continuous_bound_on_tsupport {f : } (hf_cont : Continuous f) (hf_support : HasCompactSupport f) :
∃ (C : ), 0 C xtsupport f, f x C

A continuous function with compact support admits a uniform bound on its topological support.

theorem Frourio.schwartz_density_weighted_logpull (σ : ) (f : ( σ)) (h_weighted_L2 : MeasureTheory.MemLp (fun (t : ) => LogPull σ f t * Complex.exp ((1 / 2) * t)) 2 MeasureTheory.volume) (ε : ) :
ε > 0∃ (φ : SchwartzMap ), MeasureTheory.eLpNorm (fun (t : ) => LogPull σ f t * Complex.exp ((1 / 2) * t) - φ t) 2 MeasureTheory.volume < ENNReal.ofReal ε

Schwartz functions are dense in L² for the weighted LogPull function

theorem Frourio.mellin_logpull_fourierIntegral (σ τ : ) (f : ( σ)) :
mellinTransform (↑f) (σ + Complex.I * τ) = fourierIntegral (fun (t : ) => LogPull σ f t * Complex.exp ((1 / 2) * t)) (-τ / (2 * Real.pi))

Connection between LogPull L² norm and Mellin transform L² norm This states the Parseval-type equality for the Mellin transform. Note: The actual proof requires implementing the Fourier-Plancherel theorem for the specific weighted LogPull function.

theorem Frourio.logpull_mellin_l2_relation (σ : ) (f : ( σ)) (h_weighted_L2 : MeasureTheory.MemLp (fun (t : ) => LogPull σ f t * Complex.exp ((1 / 2) * t)) 2 MeasureTheory.volume) (h_integrable : MeasureTheory.Integrable (fun (t : ) => LogPull σ f t * Complex.exp ((1 / 2) * t)) MeasureTheory.volume) :
(t : ), LogPull σ f t ^ 2 * Real.exp t = 1 / (2 * Real.pi) * (τ : ), mellinTransform (↑f) (σ + Complex.I * τ) ^ 2
theorem Frourio.plancherel_constant_is_one (σ : ) (f : ( σ)) :
C > 0, (τ : ), LogPull σ f τ ^ 2 = C * f ^ 2 C = 1

The Plancherel constant for our normalization is 1

theorem Frourio.plancherel_constant_unique (σ : ) (f : ( σ)) (C₁ C₂ : ) (h₁_pos : C₁ > 0) (h₂_pos : C₂ > 0) (h₁_eq : (τ : ), LogPull σ f τ ^ 2 = C₁ * f ^ 2) (h₂_eq : (τ : ), LogPull σ f τ ^ 2 = C₂ * f ^ 2) :
C₁ = C₂

Uniqueness of the Plancherel constant

theorem Frourio.mellin_parseval_formula (σ : ) :
C > 0, ∀ (f : ( σ)), ∫⁻ (x : ) in Set.Ioi 0, ENNReal.ofReal (f x ^ 2 * x ^ (2 * σ - 1)) < MeasureTheory.Integrable (fun (t : ) => LogPull σ f t * Complex.exp ((1 / 2) * t)) MeasureTheory.volume∫⁻ (x : ) in Set.Ioi 0, ENNReal.ofReal (f x ^ 2 * x ^ (2 * σ - 1)) = ENNReal.ofReal (C * (τ : ), mellinTransform (↑f) (σ + Complex.I * τ) ^ 2)

Explicit Mellin-Parseval formula (with necessary L² condition) This relates the Hσ norm to the L² norm of the Mellin transform on vertical lines. NOTE: The correct formulation requires relating weighted norms properly.

IMPORTANT: This theorem requires additional integrability condition for the weighted LogPull function to apply the Fourier-Plancherel theorem. This aligns with plan.md Phase 1 goals.

theorem Frourio.mellin_kernel_integrable_on_critical_line (σ : ) (f : ( σ)) (τ : ) (hf_L2 : has_weighted_L2_norm σ f) :
MeasureTheory.Integrable (fun (t : ) => f t * t ^ (σ + Complex.I * τ - 1)) (MeasureTheory.volume.restrict (Set.Ioi 0))

Integrability of Mellin kernel for functions in Hσ on the critical line Re(s) = σ This holds specifically when s = σ + iτ for real τ

theorem Frourio.mellin_transform_linear_critical_line (σ : ) (h k : ( σ)) (c : ) (τ : ) (hh_L2 : has_weighted_L2_norm σ h) (hk_L2 : has_weighted_L2_norm σ k) :
mellinTransform (h + c k) (σ + Complex.I * τ) = mellinTransform (↑h) (σ + Complex.I * τ) + c * mellinTransform (↑k) (σ + Complex.I * τ)

Alternative version: Linearity on the critical line Re(s) = σ

theorem Frourio.mellin_polarization_pointwise (F G : ) :
F + G ^ 2 - F - G ^ 2 - Complex.I * F + Complex.I * G ^ 2 + Complex.I * F - Complex.I * G ^ 2 = 4 * ((starRingEnd ) F * G)

Polarization identity for Mellin transforms

theorem Frourio.parseval_identity_equivalence (σ : ) :
C > 0, ∀ (f g : ( σ)), has_weighted_L2_norm σ fhas_weighted_L2_norm σ ginner f g = C * (τ : ), (starRingEnd ) (mellinTransform (↑f) (σ + Complex.I * τ)) * mellinTransform (↑g) (σ + Complex.I * τ)

The Mellin-Plancherel formula relates to Fourier-Parseval

theorem Frourio.mellin_isometry_normalized (σ : ) :
∃ (C : ) (U : ( σ) →L[] (MeasureTheory.Lp 2 MeasureTheory.volume)), C > 0 ∀ (f : ( σ)), U f = C * f (U f) = fun (τ : ) => mellinTransform (↑f) (σ + Complex.I * τ)

The Mellin transform preserves the L² structure up to normalization

theorem Frourio.mellin_fourier_parseval_connection (σ : ) (f : ( σ)) :
let g := fun (t : ) => f (Real.exp t) * Complex.exp ((σ - 1 / 2) * t); ∃ (hg : MeasureTheory.MemLp g 2 MeasureTheory.volume), f ^ 2 = MeasureTheory.MemLp.toLp g hg ^ 2

Connection between Mellin-Parseval and Fourier-Parseval

theorem Frourio.mellin_fourier_unitary_equivalence (σ : ) :
∃ (V : ( σ) ≃ₗᵢ[] (MeasureTheory.Lp 2 MeasureTheory.volume)), ∀ (f : ( σ)) (τ : ), ∃ (c : ), c 0 mellinTransform (↑f) (σ + Complex.I * τ) = c * (V f) τ

The Mellin transform is unitarily equivalent to Fourier transform

theorem Frourio.mellin_convolution_parseval (σ : ) (f g : ( σ)) :
(τ : ), mellinTransform (↑f) (σ + Complex.I * τ) * (starRingEnd ) (mellinTransform (↑g) (σ + Complex.I * τ)) = 2 * Real.pi * (x : ) in Set.Ioi 0, f x * (starRingEnd ) (g x) * x ^ (2 * σ - 1)

Mellin convolution theorem via Parseval

theorem Frourio.mellin_energy_conservation (σ : ) (f : ( σ)) :
(x : ) in Set.Ioi 0, f x ^ 2 * x ^ (2 * σ - 1) = 1 / (2 * Real.pi) * (τ : ), mellinTransform (↑f) (σ + Complex.I * τ) ^ 2

Energy conservation in Mellin space