Documentation

Frourio.Analysis.FourierPlancherelL2.FourierPlancherelL2

Meyers–Serrin density theorem (real line version): smooth compactly supported functions are dense in Integrable ∩ MemLp 2.

Approximating an L¹ ∩ L² function by a smooth compactly supported function in both norms.

Helper lemma for simultaneously approximating an L¹ ∩ L² function by a Schwartz function with small error in both norms.

theorem Frourio.exists_schwartz_L1_L2_approx (f : ) (hf_L1 : MeasureTheory.Integrable f MeasureTheory.volume) (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) :
∃ (φ : SchwartzMap ), (∀ (n : ), MeasureTheory.Integrable (fun (t : ) => (φ n) t) MeasureTheory.volume) (∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 1 MeasureTheory.volume) Filter.atTop (nhds 0) Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)

Placeholder: simultaneously approximate an L¹ ∩ L² function by Schwartz functions that converge in both norms.

theorem Frourio.continuous_integral_norm_sq_of_L2_tendsto {φ : } {g : } (hg_L2 : MeasureTheory.MemLp g 2 MeasureTheory.volume) (hφ_L2 : ∀ (n : ), MeasureTheory.MemLp (φ n) 2 MeasureTheory.volume) (hφ_tendsto : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => g t - φ n t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)) :
Filter.Tendsto (fun (n : ) => (t : ), φ n t ^ 2) Filter.atTop (nhds ( (t : ), g t ^ 2))

Placeholder: convergence of squared norms under L² convergence.

Once proved, this should assert that if φ n tends to g in and all the functions lie in , then the squared norms of φ n converge to the squared norm of g.

theorem Frourio.fourierIntegral_L2_convergence {φ : SchwartzMap } {g : } (hg_L1 : MeasureTheory.Integrable g MeasureTheory.volume) (hg_L2 : MeasureTheory.MemLp g 2 MeasureTheory.volume) (hφ_L1 : ∀ (n : ), MeasureTheory.Integrable (fun (t : ) => (φ n) t) MeasureTheory.volume) (hφ_L2 : ∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) (hφ_tendsto_L1 : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => g t - (φ n) t) 1 MeasureTheory.volume) Filter.atTop (nhds 0)) (hφ_tendsto_L2 : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => g t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)) :
Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (ξ : ) => fourierIntegral g ξ - fourierIntegral (fun (t : ) => (φ n) t) ξ) 2 MeasureTheory.volume) Filter.atTop (nhds 0)

Placeholder: convergence of Fourier transforms in when the original functions converge in both and .

The eventual goal is to show that if φ n → g in L¹ ∩ L², then the Fourier transforms also converge in .

Placeholder: the Fourier transform of an L¹ ∩ L² function lies in .

Ultimately this should follow from the Plancherel theorem once the preceding lemmas are established.

Fourier-Plancherel theorem for L¹ ∩ L² functions.

This is the CORRECT version of the Plancherel identity for functions in both L¹ and L². Unlike the invalid fourierIntegral_l2_norm_INVALID, this version has both:

  • L¹ assumption (Integrable g): ensures fourierIntegral g is well-defined pointwise
  • L² assumption (MemLp g 2): ensures the L² norms on both sides are finite

With both assumptions, we can prove:

  1. fourierIntegral g ∈ L² (by Plancherel)
  2. ∫ ‖g‖² = (1/(2π)) * ∫ ‖fourierIntegral g‖²

This is the standard textbook version of Plancherel for L¹ ∩ L².