Documentation

Frourio.Analysis.Zeros

Zero Lattice Structure of Frourio Symbols #

This file analyzes the zeros of the Frourio symbol and establishes the lattice structure of these zeros in the complex plane.

Main Definitions #

Main Theorems #

Implementation Notes #

The zeros of the Frourio symbol φ^(-s) - φ^(s-1) = 0 form a lattice in the complex plane. This analysis is crucial for understanding the spectral properties of the Frourio operator.

The set of zeros of the Frourio symbol for parameter φ

Equations
Instances For

    Zero spacing function

    Equations
    Instances For

      Metallic ratio with parameter p

      Equations
      Instances For

        The golden ratio is the metallic ratio with p = 1

        theorem Frourio.metallic_gt_one (p : ) (hp : 0 < p) :
        1 < φ_ p

        Metallic ratios are greater than 1 for positive p

        theorem Frourio.zeros_characterization (φ : ) ( : 1 < φ) (s : ) :
        s MellinZeros φ ∃ (k : ), s = 1 / 2 + Complex.I * Real.pi * k / (Real.log φ)

        Complete characterization of zeros

        theorem Frourio.zero_lattice_structure (φ : ) ( : 1 < φ) :
        MellinZeros φ = {x : | ∃ (k : ), 1 / 2 + Complex.I * Real.pi * k / (Real.log φ) = x}

        Zeros form a vertical lattice

        theorem Frourio.zero_spacing_formula (φ : ) ( : 1 < φ) :

        Zero spacing equals π / log φ

        Golden ratio maximizes zero spacing among metallic ratios

        theorem Frourio.zeros_on_critical_line (φ : ) ( : 1 < φ) (s : ) :
        s MellinZeros φs.re = 1 / 2

        Distribution of zeros on vertical lines

        theorem Frourio.zero_density (φ : ) ( : 1 < φ) (T : ) :
        ∃ (n : ), n = 2 * T * Real.log φ / Real.pi.natAbs + 1

        Density of zeros

        theorem Frourio.zeros_off_real_axis (φ : ) ( : 1 < φ) (s : ) :
        s MellinZeros φ s = 1 / 2 φ = 2

        Zeros avoid the real axis except at special points

        theorem Frourio.asymptotic_spacing (φ : ) ( : φ > 1) :

        Asymptotic spacing for large φ

        theorem Frourio.zeros_analogy_rh (φ : ) ( : 1 < φ) (s : ) :
        s MellinZeros φs.re = 1 / 2

        Connection to the Riemann zeta function zeros (analogy)

        theorem Frourio.zero_functional_equation (φ : ) ( : 1 < φ) (s : ) :

        Functional equation relating zeros

        theorem Frourio.zeros_determine_symbol (φ : ) ( : 1 < φ) :
        frourioSymbol φ = fun (s : ) => φ ^ (-s) - φ ^ (s - 1)

        Zeros determine the operator completely