Zero Lattice Structure of Frourio Symbols #
This file analyzes the zeros of the Frourio symbol and establishes the lattice structure of these zeros in the complex plane.
Main Definitions #
MellinZeros
: The set of zeros of the Frourio symbolZeroSpacing
: The spacing between consecutive zerosMetallicRatio
: Generalized metallic ratios
Main Theorems #
zeros_characterization
: Complete characterization of zeroszero_lattice_structure
: Lattice structure of zerosgolden_maximizes_spacing
: Golden ratio maximizes zero spacingzeros_distribution
: Distribution properties of zeros
Implementation Notes #
The zeros of the Frourio symbol φ^(-s) - φ^(s-1) = 0 form a lattice in the complex plane. This analysis is crucial for understanding the spectral properties of the Frourio operator.
The set of zeros of the Frourio symbol for parameter φ
Equations
- Frourio.MellinZeros φ = {s : ℂ | Frourio.frourioSymbol φ s = 0}
Instances For
Zero spacing function
Equations
Instances For
Equations
- Frourio.termφ__ = Lean.ParserDescr.node `Frourio.termφ__ 1022 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "φ_") (Lean.ParserDescr.cat `term 0))
Instances For
The golden ratio is the metallic ratio with p = 1
Zero spacing equals π / log φ
theorem
Frourio.golden_maximizes_spacing
(p : ℝ)
:
p > 0 → ZeroSpacing (φ_ p) ≤ ZeroSpacing goldenRatio
Golden ratio maximizes zero spacing among metallic ratios
theorem
Frourio.zeros_on_critical_line
(φ : ℝ)
(hφ : 1 < φ)
(s : ℂ)
:
s ∈ MellinZeros φ → s.re = 1 / 2
Distribution of zeros on vertical lines
Asymptotic spacing for large φ
Connection to the Riemann zeta function zeros (analogy)
Functional equation relating zeros