Zero Spacing Optimization #
This file proves that the golden ratio maximizes the spacing between zeros of the Frourio symbol among all metallic ratios.
Main Definitions #
MetallicLogFunction
: The function p ↦ log(φ_p) for metallic ratiosZeroSpacingFunction
: The function p ↦ ZeroSpacing(φ_p)
Main Theorems #
metallic_log_minimum
: log(φ_p) achieves its minimum at p = 1golden_maximizes_zero_spacing
: Golden ratio maximizes zero spacingmetallic_ratio_properties
: Basic properties of metallic ratioszero_spacing_derivative
: Analysis of the derivative
Implementation Notes #
The proof uses calculus to show that the function p ↦ log((p + √(p² + 4))/2) achieves its minimum at p = 1, which corresponds to the golden ratio.
Zero spacing as a function of the metallic parameter
Equations
- Z p = Frourio.ZeroSpacing (φ_ p)
Instances For
Equations
- Frourio.termL = Lean.ParserDescr.node `Frourio.termL 1024 (Lean.ParserDescr.symbol "L")
Instances For
Equations
- Frourio.termZ = Lean.ParserDescr.node `Frourio.termZ 1024 (Lean.ParserDescr.symbol "Z")
Instances For
Asymptotic behavior for large p
Differentiability of the zero spacing function
The derivative of zero spacing at p = 1