Documentation

Frourio.Analysis.ZeroSpacing

Zero Spacing Optimization #

This file proves that the golden ratio maximizes the spacing between zeros of the Frourio symbol among all metallic ratios.

Main Definitions #

Main Theorems #

Implementation Notes #

The proof uses calculus to show that the function p ↦ log((p + √(p² + 4))/2) achieves its minimum at p = 1, which corresponds to the golden ratio.

The logarithm of the metallic ratio as a function of p

Equations
Instances For

    Zero spacing as a function of the metallic parameter

    Equations
    Instances For
      theorem Frourio.metallic_characteristic_eq (p : ) :
      (φ_ p) ^ 2 = (p * φ_ p) + 1

      Metallic ratios satisfy the characteristic equation

      theorem Frourio.metallic_positive (p : ) (hp : 0 < p) :
      0 < φ_ p

      Metallic ratios are positive for positive p

      theorem Frourio.metallic_ratio_deriv (p : ) :
      deriv (fun (x : ) => φ_ x) p = (1 + p / (p ^ 2 + 4)) / 2

      The derivative of the metallic ratio

      theorem Frourio.metallic_log_deriv (p : ) (hp : 0 < p) :
      deriv L p = (1 + p / (p ^ 2 + 4)) / (2 * φ_ p)

      The derivative of the metallic log function

      theorem Frourio.metallic_log_second_deriv (p : ) (hp : 0 < p) :
      deriv (deriv L) p = 4 / ((p ^ 2 + 4) * (p ^ 2 + 4) * (φ_ p) ^ 2) - (1 + p / (p ^ 2 + 4)) ^ 2 / (2 * (φ_ p) ^ 2)

      The second derivative of the metallic log function

      Critical point analysis: L'(1) = 0

      Second derivative test: L''(1) > 0

      theorem Frourio.metallic_log_minimum (p : ) :
      p > 0L 1 L p

      The metallic log function achieves its global minimum at p = 1

      Golden ratio maximizes zero spacing among metallic ratios

      theorem Frourio.golden_unique_maximum (p : ) :
      p > 0p 1Z p < Z 1

      Uniqueness of the maximum

      theorem Frourio.zero_spacing_small_p (p : ) (hp : 0 < p) (hp_small : p < 1) :
      ε > 0, |Z p - Real.pi / Real.log 2| < ε

      Asymptotic behavior for small p

      theorem Frourio.zero_spacing_large_p :
      C > 0, p2, Z p C / p

      Asymptotic behavior for large p

      Continuity of the zero spacing function

      Differentiability of the zero spacing function

      The derivative of zero spacing at p = 1

      theorem Frourio.zero_spacing_concave (p : ) (hp : 0 < p) :
      deriv (deriv Z) p < 0

      Convexity properties

      theorem Frourio.zero_spacing_operator_norm_relation (p : ) :
      0 < p∀ (x✝ : ), True

      Connection to operator norms