weightedMeasure σ
assigns positive mass to any open interval contained in (0, ∞)
theorem
Frourio.continuous_ae_eq_const_on_pos
{σ : ℝ}
{f : ℝ → ℂ}
{c : ℂ}
(hf : Continuous f)
(h_ae : (fun (x : ℝ) => f x) =ᵐ[weightedMeasure σ] fun (x : ℝ) => c)
(x : ℝ)
:
If a continuous function agrees almost everywhere with a constant,
it is constant on (0, ∞)
.
theorem
Frourio.continuous_ae_eq_on_pos
{σ : ℝ}
{f g : ℝ → ℂ}
(hf : Continuous f)
(hg : Continuous g)
(h_ae : f =ᵐ[weightedMeasure σ] g)
(x : ℝ)
:
If two continuous functions agree almost everywhere for the weighted measure,
they coincide on (0, ∞)
.
theorem
Frourio.coe_cast_eq
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
[NormedAddCommGroup E]
{μ ν : MeasureTheory.Measure α}
(h : μ = ν)
(f : ↥(MeasureTheory.Lp E p μ))
:
Coercion of cast between Lp spaces with equal measures
theorem
Frourio.Hσ_cast_preserves_ae
{σ : ℝ}
(f : ℝ → ℂ)
(h_L2 : MeasureTheory.MemLp f 2 (weightedMeasure σ))
(h_eq : weightedMeasure σ = mulHaar.withDensity fun (x : ℝ) => ENNReal.ofReal (x ^ (2 * σ - 1)))
:
let g_lp := MeasureTheory.MemLp.toLp f h_L2;
let g := cast ⋯ g_lp;
Hσ.toFun g =ᵐ[weightedMeasure σ] ↑↑(MeasureTheory.MemLp.toLp f h_L2)
theorem
Frourio.cast_preserves_ae_eq
{σ : ℝ}
(h_eq : weightedMeasure σ = mulHaar.withDensity fun (x : ℝ) => ENNReal.ofReal (x ^ (2 * σ - 1)))
(f : ℝ → ℂ)
(h_L2 : MeasureTheory.MemLp f 2 (weightedMeasure σ))
:
let g_lp := MeasureTheory.MemLp.toLp f h_L2;
let g := cast ⋯ g_lp;
Hσ.toFun g =ᵐ[weightedMeasure σ] f
Cast preserves a.e. equality for Lp functions
Helper function: Create mollifier with support on [-δ, δ]
Equations
Instances For
Domain of unbounded operators on Hσ
- dense : DenseRange fun (x : ↑self.carrier) => ↑x
- measurable (f : ↥(Hσ σ)) : f ∈ self.carrier → Measurable ↑↑f