Documentation

Frourio.Analysis.HilbertSpace

theorem Frourio.weightedMeasure_pos_of_Ioo {σ a b : } (ha : 0 < a) (hb : a < b) :

weightedMeasure σ assigns positive mass to any open interval contained in (0, ∞)

theorem Frourio.continuous_ae_eq_const_on_pos {σ : } {f : } {c : } (hf : Continuous f) (h_ae : (fun (x : ) => f x) =ᵐ[weightedMeasure σ] fun (x : ) => c) (x : ) :
x > 0f x = c

If a continuous function agrees almost everywhere with a constant, it is constant on (0, ∞).

theorem Frourio.continuous_ae_eq_on_pos {σ : } {f g : } (hf : Continuous f) (hg : Continuous g) (h_ae : f =ᵐ[weightedMeasure σ] g) (x : ) :
x > 0f x = g x

If two continuous functions agree almost everywhere for the weighted measure, they coincide on (0, ∞).

theorem Frourio.coe_cast_eq {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} [NormedAddCommGroup E] {μ ν : MeasureTheory.Measure α} (h : μ = ν) (f : (MeasureTheory.Lp E p μ)) :
(cast f) =ᵐ[μ] f

Coercion of cast between Lp spaces with equal measures

theorem Frourio.Hσ_cast_preserves_ae {σ : } (f : ) (h_L2 : MeasureTheory.MemLp f 2 (weightedMeasure σ)) (h_eq : weightedMeasure σ = mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) :
let g_lp := MeasureTheory.MemLp.toLp f h_L2; let g := cast g_lp; Hσ.toFun g =ᵐ[weightedMeasure σ] (MeasureTheory.MemLp.toLp f h_L2)
theorem Frourio.cast_preserves_ae_eq {σ : } (h_eq : weightedMeasure σ = mulHaar.withDensity fun (x : ) => ENNReal.ofReal (x ^ (2 * σ - 1))) (f : ) (h_L2 : MeasureTheory.MemLp f 2 (weightedMeasure σ)) :
let g_lp := MeasureTheory.MemLp.toLp f h_L2; let g := cast g_lp; Hσ.toFun g =ᵐ[weightedMeasure σ] f

Cast preserves a.e. equality for Lp functions

noncomputable def Frourio.create_mollifier (δ : ) :

Helper function: Create mollifier with support on [-δ, δ]

Equations
Instances For
    theorem Frourio.one_le_two_pow (k : ) :
    1 2 ^ k

    Powers of 2 are at least 1

    theorem Frourio.schwartz_map_decay_from_bounds (f : ) (hf_decay : ∀ (k n : ), C > 0, ∀ (x : ), (1 + x) ^ k * iteratedDeriv n f x C) (p : × ) :
    C > 0, ∀ (x : ), (1 + x) ^ p.1 * iteratedDeriv p.2 f x C

    The decay property required for SchwartzMap construction

    theorem Frourio.contDiff_convolution_mollifier {φ : } {η : } ( : ContDiff (↑) φ) (hη_smooth : ContDiff (↑) η) (hη_supp : HasCompactSupport η) :
    ContDiff fun (x : ) => (y : ), (η y) * φ (x - y)

    Convolution with a smooth compactly supported mollifier preserves smoothness

    Schwartz functions restricted to (0,∞)

    Equations
    Instances For

      Domain of unbounded operators on Hσ

      Instances For