Documentation

Frourio.Analysis.EVI.EVICore2

Proofs for the helper lemmas

theorem Frourio.sqrt_mul_nonneg_prop (a b : ) (ha : 0 a) (hb : 0 b) :
sqrt_mul_nonneg a b ha hb
theorem Frourio.sqrt_add_le_sqrt_add_sqrt_prop (a b : ) (ha : 0 a) (hb : 0 b) :
(a + b) a + b

Subadditivity surrogate: for nonnegative a, b, √(a + b) ≤ √a + √b.

theorem Frourio.DiniUpper_add_le (φ ψ : ) (t : ) (H : DiniUpper_add_le_pred φ ψ t) :
DiniUpper (fun (τ : ) => φ τ + ψ τ) t DiniUpper φ t + DiniUpper ψ t

DiniUpper additivity upper bound (wrapper theorem from the predicate).

theorem Frourio.DiniUpper_timeRescale (σ : ) (φ : ) (t : ) (H : DiniUpper_timeRescale_pred σ φ t) :
DiniUpper (fun (τ : ) => φ (σ * τ)) t = σ * DiniUpper φ (σ * t)

Time-rescaling rule for DiniUpper (wrapper theorem from the predicate).

theorem Frourio.DiniUpper_timeRescale_pos (σ : ) ( : 0 < σ) (φ : ) (t : ) (H : DiniUpper_timeRescale_pred σ φ t) :
DiniUpper (fun (τ : ) => φ (σ * τ)) t = σ * DiniUpper φ (σ * t)

Time-rescaling for the upper Dini derivative under a positive factor. This is a wrapper that records the σ > 0 use‑site while delegating the analytical content to the supplied predicate DiniUpper_timeRescale_pred. In later phases, we will provide a proof under mild boundedness hypotheses.

theorem Frourio.gronwall_exponential_contraction_from_pred (lam : ) (W : ) (Hpred : gronwall_exponential_contraction_pred lam W) (Hineq : ∀ (t : ), DiniUpper W t + 2 * lam * W t 0) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0

Homogeneous Grönwall inequality (turn the predicate into a usable bound).

theorem Frourio.gronwall_exponential_contraction (lam : ) (W : ) (Hpred : gronwall_exponential_contraction_pred lam W) (Hineq : ∀ (t : ), DiniUpper W t + 2 * lam * W t 0) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0

Homogeneous Grönwall inequality (wrapper using the predicate).

theorem Frourio.gronwall_exponential_contraction_with_error_half_from_pred (lam η : ) (W : ) (Hpred : gronwall_exponential_contraction_with_error_half_pred lam η W) (Hineq : ∀ (t : ), 1 / 2 * DiniUpper W t + lam * W t η) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0 + 2 * η * t

Inhomogeneous Grönwall inequality (turn the predicate into a usable bound).

theorem Frourio.gronwall_exponential_contraction_with_error_half (lam η : ) (W : ) (Hpred : gronwall_exponential_contraction_with_error_half_pred lam η W) (Hineq : ∀ (t : ), 1 / 2 * DiniUpper W t + lam * W t η) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0 + 2 * η * t

Inhomogeneous Grönwall inequality in the half form (wrapper using the predicate).

theorem Frourio.gronwall_exponential_contraction_with_error_half_core (lam η : ) (W : ) (H : gronwall_exponential_contraction_with_error_half_pred lam η W) (Hineq : ∀ (t : ), 1 / 2 * DiniUpper W t + lam * W t η) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0 + 2 * η * t

Inhomogeneous Grönwall inequality (half form, core statement): If (1/2)·DiniUpper W + lam·W ≤ η pointwise, then W t ≤ exp (-(2 lam) t) · W 0 + (2 η) t.

theorem Frourio.DiniUpper_timeRescale_one (φ : ) (t : ) :
DiniUpper (fun (τ : ) => φ (1 * τ)) t = 1 * DiniUpper φ (1 * t)

Special case: time-reparameterization with unit factor is tautological.

theorem Frourio.gronwall_exponential_contraction_zero (W : ) (H : gronwall_exponential_contraction_pred 0 W) (Hineq0 : ∀ (t : ), DiniUpper W t 0) (t : ) :
W t W 0

Special case of homogeneous Grönwall at λ = 0 using a provided predicate.

theorem Frourio.gronwall_exponential_contraction_with_error_zero (lam : ) (W : ) (H : (∀ (t : ), 1 / 2 * DiniUpper W t + lam * W t 0)∀ (t : ), W t Real.exp (-(2 * lam) * t) * W 0) (Hineq0 : ∀ (t : ), 1 / 2 * DiniUpper W t + lam * W t 0) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0

Special case of inhomogeneous Grönwall at η = 0 using a provided predicate.

theorem Frourio.gronwall_exponential_contraction_core (lam : ) (W : ) (H : gronwall_exponential_contraction_pred lam W) (Hineq : ∀ (t : ), DiniUpper W t + 2 * lam * W t 0) (t : ) :
W t Real.exp (-(2 * lam) * t) * W 0

Homogeneous Grönwall inequality (core theorem): If (DiniUpper W) + (2 λ) W ≤ 0 pointwise, then W t ≤ exp (-(2 λ) t) · W 0.

theorem Frourio.gronwall_zero (W : ) (H : gronwall_exponential_contraction_pred 0 W) (Hineq0 : ∀ (t : ), DiniUpper W t 0) (t : ) :
W t W 0

Homogeneous Grönwall at λ = 0 (direct form): If DiniUpper W ≤ 0 pointwise, then W is nonincreasing: W t ≤ W 0.

theorem Frourio.bridge_contraction {X : Type u_1} [PseudoMetricSpace X] (P : EVIProblem X) (u v : X) (H : Hbridge P u v) (hSq : ContractionPropertySq P u v) :

Concrete bridge from squared-distance contraction to linear-distance contraction using monotonicity of Real.sqrt and algebraic identities.