Documentation

Frourio.Zeta.Kernel

noncomputable def Frourio.Kzeta [ZetaLineAPI] (τ : ) :

Zeta kernel on the critical line: Kζ(τ) = ‖ζ(1/2 + iτ)‖².

Equations
Instances For

    Continuous quadratic form with the zeta kernel on L²(ℝ).

    Equations
    Instances For
      noncomputable def Frourio.Qζσ [ZetaLineAPI] (σ : ) (f : ( σ)) :

      Pullback to Hσ: zeta-kernel quadratic form on Hσ via Uσ.

      Equations
      Instances For

        Positivity: Qζℝ ≥ 0.

        theorem Frourio.Qζσ_pos [ZetaLineAPI] (σ : ) (f : ( σ)) :
        0 Qζσ σ f

        Positivity on Hσ: Qζσ ≥ 0.

        Kernel predicate for Qζ on L²: vanishing a.e. on the support of Kζ (design-level).

        Equations
        Instances For

          Trivial direction used in this phase: if g = 0 a.e. (globally), then Qζℝ g = 0.