Zeta kernel on the critical line: Kζ(τ) = ‖ζ(1/2 + iτ)‖².
Equations
Instances For
Continuous quadratic form with the zeta kernel on L²(ℝ).
Equations
- Frourio.Qζℝ g = Frourio.Qℝ (fun (τ : ℝ) => Frourio.Kzeta τ) g
Instances For
Pullback to Hσ: zeta-kernel quadratic form on Hσ via Uσ.
Equations
- Frourio.Qζσ σ f = Qσ[fun (τ : ℝ) => Frourio.Kzeta τ] f
Instances For
Positivity: Qζℝ ≥ 0.
Positivity on Hσ: Qζσ ≥ 0.
Kernel predicate for Qζ on L²: vanishing a.e. on the support of Kζ (design-level).
Equations
- Frourio.Qζ_kernelPred g = (↑↑g =ᵐ[MeasureTheory.volume.restrict (Frourio.supp_K fun (τ : ℝ) => ↑(Frourio.Kzeta τ))] 0)
Instances For
theorem
Frourio.Qζ_eq_zero_of_ae_zero
[ZetaLineAPI]
(g : ↥(MeasureTheory.Lp ℂ 2 MeasureTheory.volume))
:
↑↑g =ᵐ[MeasureTheory.volume] 0 → Qζℝ g = 0
Trivial direction used in this phase: if g = 0 a.e. (globally), then Qζℝ g = 0.