noncomputable def
Frourio.Qζ_disc
[ZetaLineAPI]
(w : ↥(MeasureTheory.Lp ℂ 2 MeasureTheory.volume))
(Δτ Δξ : ℝ)
(g : ↥(MeasureTheory.Lp ℂ 2 MeasureTheory.volume))
:
Discrete quadratic form specialized to the zeta kernel.
Equations
- Frourio.Qζ_disc w Δτ Δξ g = Frourio.Qdisc (fun (τ : ℝ) => Frourio.Kzeta τ) w Δτ Δξ g
Instances For
Golden lattice spacing Δτ = π / log φ
.
Equations
Instances For
Dual lattice step choice, nominally Δξ = 2π / Δτ
.
Equations
- Frourio.Δξφ φ = 2 * Real.pi / Frourio.Δτφ φ
Instances For
noncomputable def
Frourio.Qζ_discφ
[ZetaLineAPI]
(φ : ℝ)
(w g : ↥(MeasureTheory.Lp ℂ 2 MeasureTheory.volume))
:
Zeta discrete quadratic form on the golden lattice.
Equations
- Frourio.Qζ_discφ φ w g = Frourio.Qζ_disc w (Frourio.Δτφ φ) (Frourio.Δξφ φ) g
Instances For
Two-sided bounds (design-level) for the zeta discrete quadratic form on the golden lattice.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Γ-convergence statement specialized to the zeta kernel with golden sampling.
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
Frourio.QζBoundsHypotheses
[ZetaLineAPI]
(φ : ℝ)
(w : ↥(MeasureTheory.Lp ℂ 2 MeasureTheory.volume))
:
Phase 2.3: Bounds hypotheses wrapper providing the existence of constants.
This serves as a handoff point for the analytic proof that supplies explicit
constants c1, c2
satisfying Qζ_bounds
.
- exists_bounds : Qζ_bounds φ w
Instances For
theorem
Frourio.Qζ_bounds_proof
[ZetaLineAPI]
(φ : ℝ)
(_hφ : 1 < φ)
(w : ↥(MeasureTheory.Lp ℂ 2 MeasureTheory.volume))
(h : QζBoundsHypotheses φ w)
:
Qζ_bounds φ w
Phase 2.3: From bounds hypotheses, conclude the two-sided control result.