Documentation

Frourio.Analysis.GaussianFourierTransform

Gaussian Moments and Fourier Properties #

This file contains lemmas about moments of Gaussian functions and their Fourier transforms, specifically supporting the frame condition proof in exists_golden_peak_proof.

theorem Frourio.div_sqrt_mul_delta {A : } {δ : } ( : 0 < δ) :
A / δ * δ = A * δ

A helper lemma showing that A / √δ * δ = A * √δ for positive δ. This simplifies the algebraic manipulation in the Gaussian Fourier transform proof.

theorem Frourio.delta_sq_inv_sq {δ : } ( : 0 < δ) :
δ * δ * ((↑δ)⁻¹ * (↑δ)⁻¹) = 1

Helper lemma: δ² * δ⁻² = 1 in complex numbers

theorem Frourio.complete_square_simplify {δ : } ( : 0 < δ) (ξ t : ) :
-Real.pi / δ ^ 2 * (t + Complex.I * δ ^ 2 * ξ) ^ 2 + Real.pi / δ ^ 2 * -1 * (δ ^ 2) ^ 2 * ξ ^ 2 = -Real.pi / δ ^ 2 * (t + Complex.I * δ ^ 2 * ξ) ^ 2 - Real.pi * δ ^ 2 * ξ ^ 2

Helper lemma for completing the square calculation. Shows that -π/δ² * (t + Iδ²ξ)² + π/δ² * (-1) * (δ²)² * ξ² = -π/δ² * (t + Iδ²ξ)² - πδ²ξ²

theorem Frourio.gaussian_exponent_complete_square {δ : } ( : 0 < δ) (ξ t : ) :
-Real.pi / δ ^ 2 * t ^ 2 - 2 * Real.pi * Complex.I * ξ * t = -Real.pi / δ ^ 2 * (t + Complex.I * δ ^ 2 * ξ) ^ 2 - Real.pi * δ ^ 2 * ξ ^ 2

Complete the square in the exponent appearing in Gaussian integrals. This is the algebraic identity -π/δ² * t² - 2π I ξ t = -π/δ² (t + I δ² ξ)² - π δ² ξ² over the complex numbers.

theorem Frourio.complex_gaussian_contour_shift {δ : } ( : 0 < δ) (ξ : ) :
(a : ), Complex.exp (-Real.pi / δ ^ 2 * (a + Complex.I * δ ^ 2 * ξ) ^ 2) = (s : ), Complex.exp (-Real.pi / δ ^ 2 * s ^ 2)

Complex contour shift for Gaussian integrals. For a Gaussian function, shifting the integration contour by a purely imaginary constant doesn't change the integral value. This is a consequence of Cauchy's theorem for entire functions with sufficient decay.

@[simp]
theorem Frourio.integral_ofReal' {f : } :
(x : ), (f x) = ( (x : ), f x)

Helper lemma for integral_ofReal with specific type signatures.

theorem Frourio.gaussian_integral_complex {δ : } ( : 0 < δ) :
(s : ), Complex.exp (-Real.pi / δ ^ 2 * s ^ 2) = δ

Standard complex Gaussian integral. The integral of exp(-π/δ² * s²) over ℝ equals δ. This is the complex version of the standard Gaussian integral formula.

theorem Frourio.shifted_gaussian_integral {δ : } ( : 0 < δ) (ξ : ) :
(t : ), Complex.exp (-Real.pi / δ ^ 2 * (t + Complex.I * δ ^ 2 * ξ) ^ 2) = δ

Shifted Gaussian integral formula. The integral of exp(-π/δ²(t + Iδ²ξ)²) over ℝ equals δ. This represents a Gaussian shifted by a pure imaginary amount.

theorem Frourio.complex_shifted_gaussian_integral {δ : } ( : 0 < δ) (ξ : ) :
(t : ), Complex.exp (-Real.pi / δ ^ 2 * (t + Complex.I * δ ^ 2 * ξ) ^ 2) = δ

Complex shifted Gaussian integral formula. The integral of exp(-π/δ²(t + Iδ²ξ)²) over ℝ equals δ.

theorem Frourio.gaussian_fourier_real_exp {δ : } ( : 0 < δ) (ξ : ) :
(t : ), Complex.exp (↑(-2 * Real.pi * ξ * t) * Complex.I) * (Real.exp (-Real.pi * t ^ 2 / δ ^ 2)) = δ * Complex.exp (-Real.pi * δ ^ 2 * ξ ^ 2)

The Fourier transform of a Gaussian with real exponential form. This variant uses Real.exp with coercion to complex numbers.

theorem Frourio.gaussian_fourier_transform {δ : } ( : 0 < δ) :
Real.fourierIntegral (normalizedGaussianLp δ ) = fun (ξ : ) => 2 ^ (1 / 4) * δ * Complex.exp (-Real.pi * δ ^ 2 * ξ ^ 2)

Explicit formula for the Fourier transform of a normalized Gaussian. The Fourier transform of a Gaussian is another Gaussian with reciprocal width.