Documentation

Frourio.Analysis.CauchyTheorem

Cauchy's Theorem and Complex Contour Integration #

This file contains signatures and basic results for Cauchy's theorem and complex contour integration, particularly for applications to Gaussian integrals and the Riemann Hypothesis proof.

Main definitions and results #

Implementation notes #

These are primarily signatures that will be needed for the full proof. The actual implementations require deep complex analysis theory.

theorem Frourio.rectangular_contour_conversion (f : ) (z₀ z₁ z₂ : ) :
((( (x : ) in z₀.re..z₁.re, f (x + z₀.im * Complex.I)) + Complex.I (y : ) in z₀.im..z₂.im, f (z₁.re + y * Complex.I)) + - (x : ) in z₀.re..z₁.re, f (x + z₂.im * Complex.I)) + -Complex.I (y : ) in z₀.im..z₂.im, f (z₀.re + y * Complex.I) = ((( (x : ) in z₀.re..z₁.re, f (x + z₀.im * Complex.I)) - (x : ) in z₀.re..z₁.re, f (x + z₂.im * Complex.I)) + Complex.I (y : ) in z₀.im..z₂.im, f (z₁.re + y * Complex.I)) - Complex.I (y : ) in z₀.im..z₂.im, f (z₀.re + y * Complex.I)

Equality of parameterized rectangular contour and standard interval representation. This lemma shows that the sum of parameterized integrals along a rectangular path equals the standard Cauchy integral representation.

theorem Frourio.complex_norm_add_mul_I (x y : ) :
x + y * Complex.I = (x ^ 2 + y ^ 2)

The norm of a complex number x + yi equals √(x² + y²).

theorem Frourio.integrable_of_gaussian_decay_horizontal {f : } {y : } (hf_entire : ∀ (z : ), DifferentiableAt f z) (hf_decay : ∃ (A : ) (B : ) (_ : 0 < A) (_ : 0 < B), ∀ (z : ), f z A * Real.exp (-B * z ^ 2)) :

A function with Gaussian decay is integrable along any horizontal line in the complex plane.

theorem Frourio.cauchy_rectangle_formula {f : } {R y₁ y₂ : } (hf_rect : DifferentiableOn f (Set.uIcc (-R) R ×ℂ Set.uIcc y₁ y₂)) :
( (x : ) in -R..R, f (x + y₁ * Complex.I)) - (x : ) in -R..R, f (x + y₂ * Complex.I) = -((Complex.I (t : ) in y₁..y₂, f (R + t * Complex.I)) - Complex.I (t : ) in y₁..y₂, f (-R + t * Complex.I))
theorem Frourio.contour_limit_theorem {f : } {y₁ y₂ : } (hf_integrable_y1 : MeasureTheory.Integrable (fun (x : ) => f (x + y₁ * Complex.I)) MeasureTheory.volume) (hf_integrable_y2 : MeasureTheory.Integrable (fun (x : ) => f (x + y₂ * Complex.I)) MeasureTheory.volume) (h_vert_vanish : ε > 0, R₀ > 0, RR₀, (Complex.I (t : ) in y₁..y₂, f (R + t * Complex.I)) - Complex.I (t : ) in y₁..y₂, f (-R + t * Complex.I) < ε) (h_rect : R > 0, ( (x : ) in -R..R, f (x + y₁ * Complex.I)) - (x : ) in -R..R, f (x + y₂ * Complex.I) = -((Complex.I (t : ) in y₁..y₂, f (R + t * Complex.I)) - Complex.I (t : ) in y₁..y₂, f (-R + t * Complex.I))) :
(x : ), f (x + y₁ * Complex.I) = (x : ), f (x + y₂ * Complex.I)
theorem Frourio.horizontal_contour_shift {f : } {y₁ y₂ : } (hf_entire : ∀ (z : ), DifferentiableAt f z) (hf_decay : ∃ (A : ) (B : ) (_ : 0 < A) (_ : 0 < B), ∀ (z : ), f z A * Real.exp (-B * z ^ 2)) :
(x : ), f (x + y₁ * Complex.I) = (x : ), f (x + y₂ * Complex.I)

For entire functions with Gaussian decay, the integral over any horizontal line has the same value. The decay condition automatically ensures integrability.