Documentation

Frourio.Analysis.KTransform

FG8 A3: K-transform skeleton and basic model

This module introduces a lightweight KTransform structure capturing the multi-point transform 𝒦_Οƒ as a map into (signed) kernels on ℝ together with minimal predicates representing (K1β€²) narrow continuity and (K4^m) geodesic affinity. A 1D basic model is provided to serve as a concrete instance. The design remains proof-light and avoids measure-theoretic load.

structure Frourio.KTransform (X : Type u_2) [PseudoMetricSpace X] :
Type u_2

K-transform: a map attaching to each state x : X a kernel on ℝ. The payload is an arbitrary function ℝ β†’ ℝ at this phase.

Instances For

    (K1β€²) surrogate: narrow continuity predicate.

    Equations
    Instances For

      Auxiliary predicate: a uniform lower bound for the kernel at s = 0. This lightweight surrogate is used to produce coercivity-style bounds for Dσm when building the functional layer.

      Equations
      Instances For
        noncomputable def Frourio.DsigmamFromK {X : Type u_1} [PseudoMetricSpace X] (K : KTransform X) (Ssup : ℝ) :
        X β†’ ℝ

        Interface: build Dσm from a KTransform and a supplied sup-norm bound. We keep it algebraic via a simple evaluation map x 0, scaled by Ssup.

        Equations
        Instances For

          Basic boundedness helper for DsigmamFromK

          theorem Frourio.DsigmamFromK_lower_bound {X : Type u_1} [PseudoMetricSpace X] (K : KTransform X) (Ssup C0 : ℝ) (hS : 0 ≀ Ssup) (hLB : UniformLowerBoundAtZero K C0) (x : X) :
          DsigmamFromK K Ssup x β‰₯ -(Ssup * C0)

          Uniform lower bound for Dσm inherited from the kernel lower bound at s=0.

          General templates to supply (K1β€²) beyond the basic example. These are lightweight builders that keep narrow continuity as a Prop-level flag, while offering convenient ways to construct KTransforms from pointwise continuity-in-x hypotheses and functorial pullbacks.

          def Frourio.PointwiseContinuousInX {X : Type u_1} [PseudoMetricSpace X] (map : X β†’ ℝ β†’ ℝ) :

          Pointwise continuity in the state variable x (for each s ∈ ℝ).

          Equations
          Instances For
            structure Frourio.K1primeTemplate (X : Type u_2) [PseudoMetricSpace X] :
            Type u_2

            A template capturing map together with a pointwise continuity witness.

            Instances For
              def Frourio.K1primeTemplate.pullback {X : Type u_1} [PseudoMetricSpace X] {Y : Type u_2} [PseudoMetricSpace Y] (T : K1primeTemplate X) (g : Y β†’ X) (hg : Continuous g) :

              Pull back a template along a continuous map g : Y β†’ X to obtain a template on Y. This preserves pointwise continuity-in-x.

              Equations
              Instances For
                def Frourio.KTransform.pullback {X : Type u_1} [PseudoMetricSpace X] {Y : Type u_2} [PseudoMetricSpace Y] (K : KTransform X) (g : Y β†’ X) :

                Functorial builder: pull back a KTransform along g : Y β†’ X. The narrowContinuous flag is transported unchanged as a Prop.

                Equations
                Instances For
                  structure Frourio.Displacement (X : Type u_1) :
                  Type u_1
                  • interp : X β†’ X β†’ ℝ β†’ X
                  • endpoint0 (x y : X) : self.interp x y 0 = x
                  • endpoint1 (x y : X) : self.interp x y 1 = y
                  Instances For

                    Displacement affinity (K4^m) surrogate: along the displacement interpolation, evaluation of the kernel is affine in x for each fixed s.

                    Equations
                    Instances For
                      Equations
                      Instances For
                        noncomputable def Frourio.Displacement.pullback {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace X] [PseudoMetricSpace Y] (D : Displacement X) (f : X β†’ Y) (g : Y β†’ X) (hfg : βˆ€ (y : Y), f (g y) = y) :

                        Pull back a displacement along g : Y β†’ X using a (one‑sided) section f : X β†’ Y with g ∘ f = id (or along an equivalence).

                        Equations
                        • D.pullback f g hfg = { interp := fun (y1 y2 : Y) (ΞΈ : ℝ) => f (D.interp (g y1) (g y2) ΞΈ), endpoint0 := β‹―, endpoint1 := β‹― }
                        Instances For
                          theorem Frourio.Displacement.pullback_compat {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace X] [PseudoMetricSpace Y] (D : Displacement X) (f : X β†’ Y) (g : Y β†’ X) (hfg : βˆ€ (y : Y), f (g y) = y) (hgf : βˆ€ (x : X), g (f x) = x) (y1 y2 : Y) (ΞΈ : ℝ) :
                          ΞΈ ∈ Set.Icc 0 1 β†’ g ((D.pullback f g hfg).interp y1 y2 ΞΈ) = D.interp (g y1) (g y2) ΞΈ

                          The pullback displacement is compatible with the original via the maps.