Documentation

Frourio.Analysis.FourierPlancherelL2.FourierPlancherelL2Core0

Fourier–Plancherel in #

This file sets up the statements needed to extend the explicit Fourier integral to an isometry on L²(ℝ). The key intermediate results (still left as goals) are:

The sequence n ↦ 1/(n+1) tends to zero.

theorem Frourio.smooth_compactly_supported_dense_L2_sequence (f : ) (hf : MeasureTheory.MemLp f 2 MeasureTheory.volume) :
∃ (ψ : ), (∀ (n : ), HasCompactSupport (ψ n)) (∀ (n : ), ContDiff (↑) (ψ n)) Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - ψ n t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)

Produce a sequence of compactly supported smooth approximations for an function.

The Fourier integral of a Schwartz function is in every Lᵖ.

Pairing the Fourier transform of an integrable function with a Schwartz test function can be rewritten using the conjugated transform.

Frequency-side pairing with a Schwartz function can be rewritten using the explicit kernel formulation.

For Schwartz functions the Fourier integral belongs to .

A Schwartz function is integrable.

theorem Frourio.exists_schwartz_L2_approx (f : ) (_hf_L1 : MeasureTheory.Integrable f MeasureTheory.volume) (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) :
∃ (φ : SchwartzMap ), (∀ (n : ), MeasureTheory.Integrable (fun (t : ) => (φ n) t) MeasureTheory.volume) (∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)

L¹ ∩ L² functions can be approximated in by Schwartz functions. This is a preparatory statement for the Plancherel extension.

theorem Frourio.exists_schwartz_L2_approx_general (f : ) (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) (ε : ) (hε_pos : 0 < ε) :

Each function can be approximated arbitrarily well by a Schwartz function.

Schwartz functions are dense in L²(ℝ) viewed as Lp.

Every function is the limit of a sequence of Schwartz functions in the topology. This upgrades the density statement to a sequential form that is convenient for limit arguments.

If an function is nonzero, some Schwartz test function detects it via the inner product.

theorem Frourio.L2_eq_zero_of_inner_schwartz {h : (MeasureTheory.Lp 2 MeasureTheory.volume)} (hh : ∀ (ψ : SchwartzMap ), inner h (MeasureTheory.MemLp.toLp (fun (t : ) => ψ t) ) = 0) :
h = 0

If the inner product against every Schwartz test function vanishes, then the function is identically zero.

theorem Frourio.eLpNorm_tendsto_toReal_of_tendsto {φ : SchwartzMap } {f : } (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) (hφ_L2 : ∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) (hφ_tendsto : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)) :
Filter.Tendsto (fun (n : ) => (MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume).toReal) Filter.atTop (nhds 0)
theorem Frourio.toLp_tendsto_of_eLpNorm_tendsto {φ : SchwartzMap } {f : } (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) (hφ_L2 : ∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) (hφ_tendsto : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)) :
Filter.Tendsto (fun (n : ) => MeasureTheory.MemLp.toLp (fun (t : ) => (φ n) t) ) Filter.atTop (nhds (MeasureTheory.MemLp.toLp f hf_L2))
theorem Frourio.weak_limit_fourierIntegral_of_schwartz_tendsto {φ : SchwartzMap } {f : } (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) (hφ_L1 : ∀ (n : ), MeasureTheory.Integrable (fun (t : ) => (φ n) t) MeasureTheory.volume) (hφ_L2 : ∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) (hφ_tendsto : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)) (ψ : SchwartzMap ) :
Filter.Tendsto (fun (n : ) => inner (MeasureTheory.MemLp.toLp (fun (ξ : ) => fourierIntegral (fun (t : ) => ψ t) ξ) ) (MeasureTheory.MemLp.toLp (fun (ξ : ) => fourierIntegral (fun (t : ) => (φ n) t) ξ) )) Filter.atTop (nhds ( (t : ), f t * (starRingEnd ) (ψ t)))
theorem Frourio.fourierIntegral_cauchySeq_of_schwartz_tendsto {φ : SchwartzMap } {f : } (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) (hφ_L1 : ∀ (n : ), MeasureTheory.Integrable (fun (t : ) => (φ n) t) MeasureTheory.volume) (hφ_L2 : ∀ (n : ), MeasureTheory.MemLp (fun (t : ) => (φ n) t) 2 MeasureTheory.volume) (hφ_tendsto : Filter.Tendsto (fun (n : ) => MeasureTheory.eLpNorm (fun (t : ) => f t - (φ n) t) 2 MeasureTheory.volume) Filter.atTop (nhds 0)) :
CauchySeq fun (n : ) => MeasureTheory.MemLp.toLp (fun (ξ : ) => fourierIntegral (fun (t : ) => (φ n) t) ξ)
theorem Frourio.weak_convergence_fourierIntegral_of_schwartz_approx {φ : SchwartzMap } {f : } (hf_L1 : MeasureTheory.Integrable f MeasureTheory.volume) (ψLp : (MeasureTheory.Lp 2 MeasureTheory.volume)) :
(∀ (n : ), ψLp n = MeasureTheory.MemLp.toLp (fun (ξ : ) => fourierIntegral (fun (t : ) => (φ n) t) ξ) )∀ (h_weak_limit : ∀ (ψ : SchwartzMap ), Filter.Tendsto (fun (n : ) => inner (MeasureTheory.MemLp.toLp (fun (ξ : ) => fourierIntegral (fun (t : ) => ψ t) ξ) ) (ψLp n)) Filter.atTop (nhds ( (t : ), f t * (starRingEnd ) (ψ t)))) (ψ : SchwartzMap ), Filter.Tendsto (fun (n : ) => (x : ), (ψLp n) x * (starRingEnd ) (ψ.toFun x)) Filter.atTop (nhds ( (x : ), fourierIntegral f x * (starRingEnd ) (ψ.toFun x)))

Weak convergence of Fourier transforms of Schwartz approximations implies convergence to the Fourier transform of the limit function.

theorem Frourio.strong_L2_implies_weak_convergence_schwartz (ψLp : (MeasureTheory.Lp 2 MeasureTheory.volume)) (ψ_lim : (MeasureTheory.Lp 2 MeasureTheory.volume)) (hψ_lim : Filter.Tendsto ψLp Filter.atTop (nhds ψ_lim)) (φ : SchwartzMap ) :
Filter.Tendsto (fun (n : ) => (x : ), (ψLp n) x * (starRingEnd ) (φ.toFun x)) Filter.atTop (nhds ( (x : ), ψ_lim x * (starRingEnd ) (φ.toFun x)))

Strong L² convergence implies weak convergence against Schwartz test functions.