Documentation

Frourio.Analysis.ExponentialDecay

Exponential Decay Lemmas #

This file contains lemmas about exponential decay that are used in the RH criterion proof. These are standard results from real analysis about the behavior of exp(-x²) as x → ∞.

theorem Frourio.exp_neg_sq_tendsto_zero (c : ) (hc : 0 < c) :
Filter.Tendsto (fun (n : ) => Real.exp (-c * n ^ 2)) Filter.atTop (nhds 0)

The key property: exp(-cx²) → 0 faster than any polynomial as x → ∞

theorem Frourio.tendsto_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βγ} {x : Filter α} {y : Filter β} {z : Filter γ} (hg : Filter.Tendsto g y z) (hf : Filter.Tendsto f x y) :
theorem Frourio.exponential_decay_bound (ε : ) ( : 0 < ε) :
∃ (N : ), nN, 4 * Real.exp (-Real.pi * ε ^ 2 * (n + 1) ^ 2) < ε

For any ε > 0, there exists N such that for all n ≥ N, 4 * exp(-π ε² (n+1)²) < ε. This captures the super-exponential decay of the Gaussian function.

theorem Frourio.exponential_decay_bound_reciprocal (ε : ) ( : 0 < ε) :
∃ (δ₀ : ), 0 < δ₀ ∀ (δ : ), 0 < δδ δ₀4 * Real.exp (-Real.pi * ε ^ 2 / δ ^ 2) < ε

Alternative formulation controlling the reciprocal width parameter δ. For sufficiently small positive δ, the Gaussian tail becomes smaller than ε.

theorem Frourio.gaussian_tail_bound (ε : ) ( : 0 < ε) :
∃ (N : ), nN, let δ := 1 / (n + 1); 4 * Real.exp (-Real.pi * ε ^ 2 / δ ^ 2) < ε

For Gaussian decay with parameter depending on 1/(n+1)

theorem Frourio.general_exponential_bound (A B ε : ) (hB : 0 < B) ( : 0 < ε) :
∃ (N : ), nN, A * Real.exp (-B * n ^ 2) < ε

General exponential bound: for any A > 0 and B > 0, A * exp(-B * n²) eventually becomes smaller than any ε > 0